Skip to main content

In-situ generation of large microporous skeleton in mesoporous silica framework using different dicarboxylic acids


Mesoporous Santa Barbara Amorphous-15 is known to possess a small fraction of micropores, in the walls of mesopores. The ratio of micropore to mesopore area can have a profound influence on the application of this highly ordered material in various fields. The present work aims to investigate the influence of dicarboxylic acids as organic structure interrupting agents on the micropore to mesopore ratio. The physiochemical characterization of the synthesized samples including electron microscopy, nitrogen adsorption–desorption isotherms, MAS 29Si-NMR, FT-IR demonstrate a distinct change in the morphology and micropore area due to the different dicarboxylic acids used during synthesis. Our results show that the decrease in chain length of the dicarboxylic acid has a direct relation to the increase in micropore area which has a significant role in the adsorption properties of mesoporous silica. Thus the dicarboxylic acid mediated tuning of the micropores area of mesoporous silica can be used for various applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    F. Qu, G. Zhu, S. Huang, S. Li, S. Qiu, ChemPhysChem 7, 400 (2006)

    CAS  Article  Google Scholar 

  2. 2.

    C. Charnay, S. Bégu, C. Tourné-Péteilh, L. Nicole, D.A. Lerner, J.M. Devoisselle, Eur. J. Pharm. Biopharm. 57, 533 (2004)

    CAS  Article  Google Scholar 

  3. 3.

    S.W. Song, K. Hidajat, S. Kawi, Langmuir 21, 9568 (2005)

    CAS  Article  Google Scholar 

  4. 4.

    D.H. Hwang, D. Lee, H. Lee, D. Choe, S.H. Lee, K. Lee, Korean J. Chem. Eng. 27, 1087 (2010)

    CAS  Article  Google Scholar 

  5. 5.

    J.M. Rosenholm, M. Lindén, J. Control Release 128, 157 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    L. Li, C. Liu, A. Geng, C. Jiang, Y. Guo, C. Hu, Mater. Res. Bull. 41, 319 (2006)

    CAS  Article  Google Scholar 

  7. 7.

    T. Kimura, K. Kuroda, Adv. Funct. Mater. 19, 511 (2009)

    CAS  Article  Google Scholar 

  8. 8.

    Z. Li, L. Yu, B. Dong, F. Geng, L. Zheng, G. Li, J. Dispers. Sci. Technol. 29, 1066 (2008)

    CAS  Article  Google Scholar 

  9. 9.

    C.Y. Won, S. Andreas, Chem. Mater. 23, 1761 (2011)

    Article  Google Scholar 

  10. 10.

    E.C.P. Anders, Science 8, 145 (2003)

    Google Scholar 

  11. 11.

    R. Roger, M. Louis, Chem. Mater. 13, 2999 (2001)

    Article  Google Scholar 

  12. 12.

    Y. Li, N. Li, J. Tu, X. Li, B. Wang, Y. Chi, D. Liu, D. Yang, Mater. Res. Bull. 46, 2317 (2011)

    CAS  Article  Google Scholar 

  13. 13.

    F. Kleitz, U. Wilczok, F. Schüth, F. Marlow, Phys. Chem. Chem. Phys. 3, 3486 (2001)

    CAS  Article  Google Scholar 

  14. 14.

    Q. Shi, Y. Yan, F. Zhang, S. Xie, B. Tu, D. Zhao, Adv. Funct. Mater. 15, 1377 (2005)

    Article  Google Scholar 

  15. 15.

    J. Tu, R. Wang, W. Geng, X. Lai, T. Zhang, N. Li, N. Yue, X. Li, Sens. Actuators B 136, 392 (2009)

    CAS  Article  Google Scholar 

  16. 16.

    L. Huang, S. Kawi, K. Hidajat, S.C. Ng, Micropor. Mesopor. Mater. 88, 254 (2006)

    CAS  Article  Google Scholar 

  17. 17.

    Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, S. Wang, J. Control Release 145, 257 (2010)

    CAS  Article  Google Scholar 

  18. 18.

    P.N. Sajo, S. Igor, Micropor. Mesopor. Mater. 116, 581 (2008)

    Article  Google Scholar 

  19. 19.

    Z. Wang, S. Zong, J. Yang, J. Li, Y. Cui, Biosens. Bioelectron. 26, 2883 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    G.B. Martín, E.R. Alberto, J.A.A.S. Galo, ACS Appl. Mater. Interfaces 2, 360 (2010)

    Article  Google Scholar 

  21. 21.

    Y. Zhu, J. Shi, H. Chen, W. Shen, X. Dong, Micropor. Mesopor. Mater. 84, 218 (2005)

    CAS  Article  Google Scholar 

  22. 22.

    Q. Huo, D. Zhao, J. Feng, K. Weston, S.K. Buratto, G.D. Stucky, Adv. Mater. 9, 974 (1997)

    CAS  Article  Google Scholar 

  23. 23.

    J. Wang, C.K. Tsung, R.C. Hayward, Y. Wu, G.D. Stucky, Angew. Chem. Int. Ed. 44, 332 (2005)

    CAS  Article  Google Scholar 

  24. 24.

    D. Zhao, J. Sun, Q. Li, G.D. Stucky, Chem. Mater. 12, 275 (2000)

    CAS  Article  Google Scholar 

  25. 25.

    S.P. Naik, M. Ogura, T. Okubo, Ind. Eng. Chem. Res. 44, 4156 (2005)

    CAS  Article  Google Scholar 

  26. 26.

    Y. Lu, R. Ganguli, C.A. Drewlen, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, J.I. Zink, Nature 389, 364 (1997)

    CAS  Article  Google Scholar 

  27. 27.

    H. Miyata, T. Suzuki, A. Fukuoka, T. Sawada, M. Watanabe, T. Noma, K. Takada, T. Mukaide, K. Kuroda, Nat. Mater. 3, 651 (2004)

    CAS  Article  Google Scholar 

  28. 28.

    S. Schacht, Q. Huo, I.G. VoigtMartin, G.D. Stucky, F. Schüth, Science 273, 768 (1996)

    CAS  Article  Google Scholar 

  29. 29.

    M.C. Chao, D.S. Wang, H.P. Lin, C.Y. Mou, Mater. Chem. 13, 2853 (2003)

    CAS  Article  Google Scholar 

  30. 30.

    C. Yu, B. Tian, J. Fan, G.D. Stucky, D. Zhao, J. Am. Chem. Soc. 124, 4556 (2002)

    CAS  Article  Google Scholar 

  31. 31.

    A. Sayari, Angew. Chem. Int. Ed. 39, 2920 (2000)

    CAS  Article  Google Scholar 

  32. 32.

    D. Yan, X.J. Meng, S.G. Li, F.S. Xiao, Micropor. Mesopor. Mater. 82, 121 (2005)

    Article  Google Scholar 

  33. 33.

    J.B. Pang, K.Y. Qiu, Y. Wei, J. Non Cryst. Solids 283, 101 (2001)

    CAS  Article  Google Scholar 

  34. 34.

    L. Hong-Ping, M. Chung-Yuan, Acc. Chem. Res. 35, 927 (2002)

    Article  Google Scholar 

  35. 35.

    M.K. Naskar, M. Eswaramoorthy, J. Chem. Sci. 120, 181 (2008)

    CAS  Article  Google Scholar 

  36. 36.

    C. Cooper, R. Burch, Water Res. 33, 3689 (1999)

    CAS  Article  Google Scholar 

  37. 37.

    D. Zhu, H. Zhang, Q. Tao, Z. Xu, S. Zheng, Environ. Toxicol. Chem. 28, 1400 (2009)

    CAS  Article  Google Scholar 

  38. 38.

    V. Meynen, P. Cool, E.F. Vansant, Micropor. Mesopor. Mater. 125, 170 (2009)

    CAS  Article  Google Scholar 

  39. 39.

    G. Cavallaro, P. Pierro, F.S. Palumbo, F. Testa, L. Pasqua, R. Aiello, Drug Deliv. 11, 41 (2004)

    CAS  Article  Google Scholar 

  40. 40.

    M.K. Arouaa, S.P.P. Leonga, L.Y. Teoa, C.Y. Yin, W.M.A.W. Daud, Bioresour. Technol. 99, 5786 (2008)

    Article  Google Scholar 

  41. 41.

    B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Dyes Pigm. 75, 143 (2007)

    CAS  Article  Google Scholar 

  42. 42.

    A.M. Peers, J. Catal. 4, 499 (1965)

    CAS  Article  Google Scholar 

Download references


The authors wish to acknowledge Nano Mission Council, DST and SASTRA University for infrastructural and financial support.

Author information



Corresponding author

Correspondence to Uma Maheswari Krishnan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gandhi, S., Sethuraman, S. & Krishnan, U.M. In-situ generation of large microporous skeleton in mesoporous silica framework using different dicarboxylic acids. J Porous Mater 21, 53–62 (2014).

Download citation


  • Amorphous materials
  • Microporous materials
  • Nanostructures
  • Inorganic compounds
  • Microstructure