Skip to main content
Log in

In-situ generation of large microporous skeleton in mesoporous silica framework using different dicarboxylic acids

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mesoporous Santa Barbara Amorphous-15 is known to possess a small fraction of micropores, in the walls of mesopores. The ratio of micropore to mesopore area can have a profound influence on the application of this highly ordered material in various fields. The present work aims to investigate the influence of dicarboxylic acids as organic structure interrupting agents on the micropore to mesopore ratio. The physiochemical characterization of the synthesized samples including electron microscopy, nitrogen adsorption–desorption isotherms, MAS 29Si-NMR, FT-IR demonstrate a distinct change in the morphology and micropore area due to the different dicarboxylic acids used during synthesis. Our results show that the decrease in chain length of the dicarboxylic acid has a direct relation to the increase in micropore area which has a significant role in the adsorption properties of mesoporous silica. Thus the dicarboxylic acid mediated tuning of the micropores area of mesoporous silica can be used for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Qu, G. Zhu, S. Huang, S. Li, S. Qiu, ChemPhysChem 7, 400 (2006)

    Article  CAS  Google Scholar 

  2. C. Charnay, S. Bégu, C. Tourné-Péteilh, L. Nicole, D.A. Lerner, J.M. Devoisselle, Eur. J. Pharm. Biopharm. 57, 533 (2004)

    Article  CAS  Google Scholar 

  3. S.W. Song, K. Hidajat, S. Kawi, Langmuir 21, 9568 (2005)

    Article  CAS  Google Scholar 

  4. D.H. Hwang, D. Lee, H. Lee, D. Choe, S.H. Lee, K. Lee, Korean J. Chem. Eng. 27, 1087 (2010)

    Article  CAS  Google Scholar 

  5. J.M. Rosenholm, M. Lindén, J. Control Release 128, 157 (2008)

    Article  CAS  Google Scholar 

  6. L. Li, C. Liu, A. Geng, C. Jiang, Y. Guo, C. Hu, Mater. Res. Bull. 41, 319 (2006)

    Article  CAS  Google Scholar 

  7. T. Kimura, K. Kuroda, Adv. Funct. Mater. 19, 511 (2009)

    Article  CAS  Google Scholar 

  8. Z. Li, L. Yu, B. Dong, F. Geng, L. Zheng, G. Li, J. Dispers. Sci. Technol. 29, 1066 (2008)

    Article  CAS  Google Scholar 

  9. C.Y. Won, S. Andreas, Chem. Mater. 23, 1761 (2011)

    Article  Google Scholar 

  10. E.C.P. Anders, Science 8, 145 (2003)

    Google Scholar 

  11. R. Roger, M. Louis, Chem. Mater. 13, 2999 (2001)

    Article  Google Scholar 

  12. Y. Li, N. Li, J. Tu, X. Li, B. Wang, Y. Chi, D. Liu, D. Yang, Mater. Res. Bull. 46, 2317 (2011)

    Article  CAS  Google Scholar 

  13. F. Kleitz, U. Wilczok, F. Schüth, F. Marlow, Phys. Chem. Chem. Phys. 3, 3486 (2001)

    Article  CAS  Google Scholar 

  14. Q. Shi, Y. Yan, F. Zhang, S. Xie, B. Tu, D. Zhao, Adv. Funct. Mater. 15, 1377 (2005)

    Article  Google Scholar 

  15. J. Tu, R. Wang, W. Geng, X. Lai, T. Zhang, N. Li, N. Yue, X. Li, Sens. Actuators B 136, 392 (2009)

    Article  CAS  Google Scholar 

  16. L. Huang, S. Kawi, K. Hidajat, S.C. Ng, Micropor. Mesopor. Mater. 88, 254 (2006)

    Article  CAS  Google Scholar 

  17. Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, S. Wang, J. Control Release 145, 257 (2010)

    Article  CAS  Google Scholar 

  18. P.N. Sajo, S. Igor, Micropor. Mesopor. Mater. 116, 581 (2008)

    Article  Google Scholar 

  19. Z. Wang, S. Zong, J. Yang, J. Li, Y. Cui, Biosens. Bioelectron. 26, 2883 (2011)

    Article  CAS  Google Scholar 

  20. G.B. Martín, E.R. Alberto, J.A.A.S. Galo, ACS Appl. Mater. Interfaces 2, 360 (2010)

    Article  Google Scholar 

  21. Y. Zhu, J. Shi, H. Chen, W. Shen, X. Dong, Micropor. Mesopor. Mater. 84, 218 (2005)

    Article  CAS  Google Scholar 

  22. Q. Huo, D. Zhao, J. Feng, K. Weston, S.K. Buratto, G.D. Stucky, Adv. Mater. 9, 974 (1997)

    Article  CAS  Google Scholar 

  23. J. Wang, C.K. Tsung, R.C. Hayward, Y. Wu, G.D. Stucky, Angew. Chem. Int. Ed. 44, 332 (2005)

    Article  CAS  Google Scholar 

  24. D. Zhao, J. Sun, Q. Li, G.D. Stucky, Chem. Mater. 12, 275 (2000)

    Article  CAS  Google Scholar 

  25. S.P. Naik, M. Ogura, T. Okubo, Ind. Eng. Chem. Res. 44, 4156 (2005)

    Article  CAS  Google Scholar 

  26. Y. Lu, R. Ganguli, C.A. Drewlen, M.T. Anderson, C.J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M.H. Huang, J.I. Zink, Nature 389, 364 (1997)

    Article  CAS  Google Scholar 

  27. H. Miyata, T. Suzuki, A. Fukuoka, T. Sawada, M. Watanabe, T. Noma, K. Takada, T. Mukaide, K. Kuroda, Nat. Mater. 3, 651 (2004)

    Article  CAS  Google Scholar 

  28. S. Schacht, Q. Huo, I.G. VoigtMartin, G.D. Stucky, F. Schüth, Science 273, 768 (1996)

    Article  CAS  Google Scholar 

  29. M.C. Chao, D.S. Wang, H.P. Lin, C.Y. Mou, Mater. Chem. 13, 2853 (2003)

    Article  CAS  Google Scholar 

  30. C. Yu, B. Tian, J. Fan, G.D. Stucky, D. Zhao, J. Am. Chem. Soc. 124, 4556 (2002)

    Article  CAS  Google Scholar 

  31. A. Sayari, Angew. Chem. Int. Ed. 39, 2920 (2000)

    Article  CAS  Google Scholar 

  32. D. Yan, X.J. Meng, S.G. Li, F.S. Xiao, Micropor. Mesopor. Mater. 82, 121 (2005)

    Article  Google Scholar 

  33. J.B. Pang, K.Y. Qiu, Y. Wei, J. Non Cryst. Solids 283, 101 (2001)

    Article  CAS  Google Scholar 

  34. L. Hong-Ping, M. Chung-Yuan, Acc. Chem. Res. 35, 927 (2002)

    Article  Google Scholar 

  35. M.K. Naskar, M. Eswaramoorthy, J. Chem. Sci. 120, 181 (2008)

    Article  CAS  Google Scholar 

  36. C. Cooper, R. Burch, Water Res. 33, 3689 (1999)

    Article  CAS  Google Scholar 

  37. D. Zhu, H. Zhang, Q. Tao, Z. Xu, S. Zheng, Environ. Toxicol. Chem. 28, 1400 (2009)

    Article  CAS  Google Scholar 

  38. V. Meynen, P. Cool, E.F. Vansant, Micropor. Mesopor. Mater. 125, 170 (2009)

    Article  CAS  Google Scholar 

  39. G. Cavallaro, P. Pierro, F.S. Palumbo, F. Testa, L. Pasqua, R. Aiello, Drug Deliv. 11, 41 (2004)

    Article  CAS  Google Scholar 

  40. M.K. Arouaa, S.P.P. Leonga, L.Y. Teoa, C.Y. Yin, W.M.A.W. Daud, Bioresour. Technol. 99, 5786 (2008)

    Article  Google Scholar 

  41. B.H. Hameed, A.L. Ahmad, K.N.A. Latiff, Dyes Pigm. 75, 143 (2007)

    Article  CAS  Google Scholar 

  42. A.M. Peers, J. Catal. 4, 499 (1965)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Nano Mission Council, DST and SASTRA University for infrastructural and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Maheswari Krishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, S., Sethuraman, S. & Krishnan, U.M. In-situ generation of large microporous skeleton in mesoporous silica framework using different dicarboxylic acids. J Porous Mater 21, 53–62 (2014). https://doi.org/10.1007/s10934-013-9746-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9746-7

Keywords

Navigation