Skip to main content
Log in

Nanoporous Ni: electrodeposition synthesis, morphology, and magnetic property

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Free-standing nanoporous Ni were successfully synthesized by electrodepositing Ni through the melamine–formaldehyde (MF) aerogels template which was subsequently removed during thermal decomposition process. The MF/Ni composites and the nanoporous Ni samples were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen sorption and vibration sample magnetometer. It was found that electrodepositing was successfully applied in growing Ni through the MF aerogels network structure. Burning out of the MF aerogels produced a free-standing nanoporous Ni with a relative high surface area (53.8 m2/g). In addition, the nanoporous Ni samples presented nearly superparamagnetic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Denuault, C. Milhano, D. Pletcher, Phys. Chem. Chem. Phys. 7, 3545–3551 (2005)

    Article  CAS  Google Scholar 

  2. A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer, Science 163, 319–322 (2010)

    Article  Google Scholar 

  3. V. Ganesh, V. Lakshminarayanan, Electrochimica Acta 49, 3561–3572 (2004)

    Article  CAS  Google Scholar 

  4. F.H. Meng, X.L. Yan, J.G. Liu, J. Gu, Z.G. Zhou, Electrochimica Acta 56, 4657–4662 (2011)

    Article  CAS  Google Scholar 

  5. R.R. Debra, W.L. Jeffrey, C.L. Justin, E.F. Anne, P.R. Christopher, M.M. Todd, E.B. Megan, M.L. Alia, Chem. Soc. Rev. 38, 226–252 (2009)

    Article  Google Scholar 

  6. J.T. Zhang, P.P. Liu, H.Y. Ma, Y. Ding, J. Phys. Chem. C 111, 10382–10388 (2007)

    Article  CAS  Google Scholar 

  7. D.B. Robinson, M.E. Langham, S.J. Fares, M.D. Ong, B.W. Jacobs, Int. J. Hydrogen Energy 35, 5423–5433 (2010)

    Article  CAS  Google Scholar 

  8. D.B. Robinson, S.J. Fares, Int. J. Hydrogen Energy 34, 5585–5591 (2009)

    Article  CAS  Google Scholar 

  9. B.C. Tappan, S.A. Steiner, E.P. Luther, Angew. Chem. Int. Ed. 49, 4544–4565 (2010)

    Article  CAS  Google Scholar 

  10. H.Y. Hsueh, Y.C. Huang, R.M. Ho, C.H. Lai, T. Makida, H. Hasegawa, Adv. Mater. 23, 3041–3046 (2011)

    Article  CAS  Google Scholar 

  11. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450–453 (2001)

    Article  CAS  Google Scholar 

  12. M. Li, Y.Z. Zhou, H.R. Geng, J. Porous Mater. 19, 791–796 (2012)

    Article  CAS  Google Scholar 

  13. T.F. Baumann, J. Biener, Y.M. Wang, S.O. Kucheyev, E.J. Nelson, J.H. Satcher, J.W. Elam, M.J. Pellin, A.V. Hamza, Chem. Mater. 18, 6106–6108 (2006)

    Article  CAS  Google Scholar 

  14. P.N. Bartlett, Marwan. Chem. Mater. 15, 2962–2968 (2003)

    Article  CAS  Google Scholar 

  15. H. Masuda, K. Fukuda, Science 268, 1466–1468 (1995)

    Article  CAS  Google Scholar 

  16. A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, J. Appl. Phys. 84, 6023 (1998)

    Article  CAS  Google Scholar 

  17. M. Kristen, Kulinowski, P. Jiang, H. Vaswani, V.L. Colvin, Adv. Mater. 12, 833–838 (2000)

    Article  Google Scholar 

  18. H. Wang, H.Y. Jeong, M. Imura, L. Wang, L. Radhakrishnan, N. Fujita, T. Castle, O. Terasaki, Y. Yamauchi, J. Am. Chem. Soc. 133, 14526–14529 (2011)

    Article  CAS  Google Scholar 

  19. R.W. Pekala, U.S. Patent 1992

  20. Z.P. Sun, C.Y. Wang, J.J. Wei, Z.B. Fu, H.Q. Zhang, X. Yang, Y.J. Tang, High Power Laser and Particle Beams 24, 379–382 (2012)

    Article  CAS  Google Scholar 

  21. A. Tsyganok, C.M. Holt, S. Murphy, D. Mitlin, M.R. Gray, Fuel 93, 415–422 (2012)

    Article  CAS  Google Scholar 

  22. J. Freel, W. Pieters, R. Anderson, J. Catal. 14, 247–256 (1969)

    Article  CAS  Google Scholar 

  23. M. Bursell, A. Lundblad, P. Bjoernbom, Proc. Electrochem. Soc. 7, 116 (2002)

    Google Scholar 

  24. K. Liang, X.Z. Tang, W.C. Hu, J. Mater. Chem. 22, 11062–11067 (2012)

    Article  CAS  Google Scholar 

  25. M. Hakamada, M. Takahashi, T. Furukama, M. Mabuchi, J. Appl. Phys. Lett. 94, 153105 (2009)

    Article  Google Scholar 

  26. G. Herzer, IEEE Trans. Magn. 16, 1397–1402 (1990)

    Article  Google Scholar 

  27. M. Rajamathi, S. Thimmaiah, P.E.D. Morgan, R. Seshadri, J. Mater. Chem. 11, 2489–2492 (2001)

    Article  CAS  Google Scholar 

  28. G. Sheela, M. Pushpavanam, S. Pushpavanam, Int. J. Hydrogen Energy 27, 627–633 (2002)

    Article  CAS  Google Scholar 

  29. P. Erri, J. Nader, A. Varma, Adv. Mater. 20, 1243–1245 (2008)

    Article  CAS  Google Scholar 

  30. M. Panda, M. Rajamathi, R. Seshadri, Chem. Mater. 14, 4762–4767 (2002)

    Article  CAS  Google Scholar 

  31. S.Z. Chu, K. Wada, S. Inoue, S. Todoroki, Chem. Mater. 14, 4595–4602 (2002)

    Article  CAS  Google Scholar 

  32. Z.T. Zhang, S. Dai, D. Blom, J. Shen, Chem. Mater. 14, 965–968 (2002)

    Article  CAS  Google Scholar 

  33. J. Cai, J. Xu, J.M. Wang, L.Y. Zhang, H. Zhou, Y. Zhong, D. Chen, H.Q. Fan, H.B. Shao, J.Q. Zhang, C.N. Cao, Int. J. Hydrogen Energy 38, 934–941 (2011)

    Article  Google Scholar 

  34. K. Nielsch, F. Müller, A.P. Li, U. Gösele, Adv. Mater. 12, 582 (2000)

    Article  CAS  Google Scholar 

  35. L. Sun, C.L. Chein, P.C. Searson, Chem. Mater. 16, 3125–3129 (2004)

    Article  CAS  Google Scholar 

  36. G.C. Ruben, R.W. Pekala, J. Non Cryst. Solids 186, 219–231 (1995)

    Article  CAS  Google Scholar 

  37. K.V.P.M. Shafi, A. Gedanken, Chem. Mater. 10, 3445–3450 (1998)

    Article  CAS  Google Scholar 

  38. C. Liu, Z.J. Zhang, Chem. Mater. 13, 2092–2096 (2001)

    Article  CAS  Google Scholar 

  39. D.H. Chen, C.H. Hsieh, J. Mater. Chem. 2, 12412–12415 (2002)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) under Grants 51101141, Science and Technology on Plasma Physics Laboratory under Grants 9140C680502110C6807 and Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials under Grants 10zxfk34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoyang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Fu, Z., Yang, X. et al. Nanoporous Ni: electrodeposition synthesis, morphology, and magnetic property. J Porous Mater 21, 9–14 (2014). https://doi.org/10.1007/s10934-013-9740-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9740-0

Keywords

Navigation