Skip to main content
Log in

Hydrothermal synthesis of an ITH-type germanosilicate zeolite in a non-concentrated gel system

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A germanosilicate zeolite with the ITH framework type (designated JLG-18) has been hydrothermally synthesized. Compared with other ITH-type materials synthesized in concentrated systems, JLG-18 was the first one synthesized in a non-concentrated system. In addition, the organic structure-directing agent (OSDA) for the synthesis of JLG-18 was N,N,N′,N′-tetramethyl-1,6-hexanediamine (TMHDA), which was less expensive than those used for the synthesis of other ITH-type materials. The optimal molar ratio of the initial gel was 0.5 SiO2: 0.5 GeO2: 7 TMHDA: 1.4 HF: 42 H2O. The effects of various synthetic parameters on the formation of final products, such as source materials, GeO2:SiO2 ratio, H2O:(SiO2 + GeO2) ratio, TMHDA:(SiO2 + GeO2) ratio, crystallization temperature, and reaction time, were investigated. The as-synthesized samples were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP), elemental analysis, thermogravimetric analysis (TG), and N2 adsorption. JLG-18 with a Si:Ge ratio of 2:1 exhibited excellent thermal stability, even after calcination at 700 °C in air. The microporous surface area of JLG-18 was 317.07 m2/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. J.A. Rabo, P.H. Kasai, Prog. Solid State Chem. 9, 1 (1975)

    Article  CAS  Google Scholar 

  2. D. Barthomeuf, J. Phys. Chem. 83, 249 (1979)

    Article  CAS  Google Scholar 

  3. P.A. Jacobs, Catal. Rev. Sci. Eng. 24, 415 (1982)

    Article  CAS  Google Scholar 

  4. Z. Wang, J. Yu, R. Xu, Chem. Soc. Rev. 41, 1729 (2011)

    Article  Google Scholar 

  5. G. Sastre, J.A. Vidal-Moya, T. Blasco, J. Rius, J.L. Jordá, M.T. Navarro, F. Rey, A. Corma, Angew. Chem. Int. Ed. 41, 4722 (2002)

    Article  CAS  Google Scholar 

  6. A. Corma, F. Rey, S. Valencia, J.L. Jordá, J. Rius, Nature Mater. 2, 493 (2003)

    Article  CAS  Google Scholar 

  7. R. Castañeda, A. Corma, V. Fornés, F. Rey, J. Rius, J. Am. Chem. Soc. 125, 7820 (2003)

    Article  Google Scholar 

  8. D.L. Dorset, K.G. Strohmaier, C.E. Kliewer, A. Corma, M.J. Diaz-Cabanas, F. Rey, C.J. Gilmore, Chem. Mater. 20, 5325 (2008)

    Article  CAS  Google Scholar 

  9. J. Jiang, J. Yu, A. Corma, Angew. Chem. Int. Ed. 49, 3120 (2010)

    Article  CAS  Google Scholar 

  10. J. Jiang, Y. Xu, P. Cheng, Q. Sun, J. Yu, A. Corma, R. Xu, Chem. Mater. 23, 4709 (2011)

    Article  CAS  Google Scholar 

  11. A. Corma, M.J. Diaz-Cabanas, J.L. Jorda, F. Rey, G. Sastre, K.G. Strohmaier, J. Am. Chem. Soc. 130, 16482 (2008)

    Article  CAS  Google Scholar 

  12. J. Sun, C. Bonneau, Á. Cantín, A. Corma, M.J. Díaz-Cabañas, M. Moliner, D. Zhang, M. Li, X. Zou, Nature 458, 1154 (2009)

    Article  CAS  Google Scholar 

  13. A. Corma, M.J. Díaz-Cabañas, J.X. Jiang, M. Afeworki, D.L. Dorset, S.L. Soled, K.G. Strohmaier, Proc. Natl. Acad. Sci. USA 107, 13997 (2010)

    Article  CAS  Google Scholar 

  14. J. Jiang, J.L. Jorda, J. Yu, L.A. Baumes, E. Mugnaioli, M.J. Diaz-Cabanas, U. Kolb, A. Corma, Science 333, 1131 (2011)

    Article  CAS  Google Scholar 

  15. J.A. Vidal-Moya, T. Blasco, F. Rey, A. Corma, M. Puche, Chem. Mater. 15, 3961 (2003)

    Article  CAS  Google Scholar 

  16. M. O’Keeffe, O.M. Yaghi, Chem. Eur. J. 5, 2796 (1999)

    Article  Google Scholar 

  17. A. Corma, M.T. Navarro, F. Rey, J. Rius, S. Valencia, Angew. Chem. Int. Ed. 40, 2277 (2001)

    Article  CAS  Google Scholar 

  18. Ch. Baerlocher, L.B. McCusker http://www.iza-structure.org/

  19. T. Boix, M. Puche, M.A. Camblor, A. Corma, US Patent 6471941 (2002)

  20. A. Corma, M. Puche, F. Rey, G. Sankar, S.J. Teat, Angew. Chem. Int. Ed. 42, 1156 (2003)

    Article  CAS  Google Scholar 

  21. J. S. Buchanan, J.M. Dakka, X. Feng, J.G. Santiesteban, J. Dakka, US2004087822-A1 (2004)

  22. R. Castaneda, A. Corma, V. Fornes, J. Martinez-Triguero, S. Valencia, J. Catal. 238, 79 (2006)

    Article  CAS  Google Scholar 

  23. N. Bats, L. Rouleau, J.L. Paillaud, P. Caullet, Y. Mathieu, S. Lacombe, Stud. Surf. Sci. Catal. 154, 283 (2004)

    Article  Google Scholar 

  24. G. Xu, X. Zhu, X. Li, S. Xie, S. Liu, L. Xu, Micropor. Mesopor. Mater. 129, 278 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China and the State Basic Research Projects of China (2011CB808703) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Liu, J., Li, Y. et al. Hydrothermal synthesis of an ITH-type germanosilicate zeolite in a non-concentrated gel system. J Porous Mater 20, 975–981 (2013). https://doi.org/10.1007/s10934-013-9676-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-013-9676-4

Keywords

Navigation