Skip to main content
Log in

Effect of tungsten loading on zirconia impregnated MCM-41 and its catalytic activity on transesterification reaction

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

WO3/ZrO2 weight % (WO3/ZrO2 = wt% = 4/22, 8/22, 15/22, 15/30 and 15/40) was impregnated on Si-MCM-41. The crystalinity, textural property, surface feature and surface acidity of the materials were characterized by XRD, N2-physisorption isotherm (BET), NH3-TPD, Laser-Raman and XRF. The XRD and BET results revealed that the materials were hexagonally ordered mesoporous (pore size = 2.58–3.07 nm) materials. High angle XRD showed the presence of tetragonal ZrO2 (crystallite size L = 14.88 nm) and monoclinic ZrO2. The catalytically active t-ZrO2 was stabilized by increasing wt% of WO3. Raman spectra confirmed the presences of crystalline WO3 along with t-ZrO2 and m-ZrO2 which was not detected by high angle XRD. WO3 restrict the phase transfer from metastable t-ZrO2 to thermodynamically favoured m-ZrO2. NH3-TPD results indicated the presence of weak acid sites and it increased with an increase in tungsten loading on mesoporous materials. There was no appreciable increase in acid sites by increasing ZrO2. The catalytic activity was studied on transesterification of diethyl oxalate diester with various alcohols in liquid phase system under autogeneous pressure. When the t-ZrO2 phase increases the selectivity of diester also increases. However the optimum metal oxide loading on Si-MCM-41 was with 15 % WO3/22 % ZrO2/Si-MCM-41. Hence the materials can be a convenient and suitable acid catalyst for transesterification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Karimi, G.R. Ebrahimian, H. Seradj, Org. Lett. 1, 1737 (1999)

    Article  CAS  Google Scholar 

  2. Z. Duan, Y. Gu, Y. Deng, Catal. Commun. 7, 651 (2006)

    Article  CAS  Google Scholar 

  3. M. Csiba, J. Cleophax, A. Loupy, J. Malthete, S.D. Gero, Tetrahedron Lett. 34, 1787 (1993)

    Article  CAS  Google Scholar 

  4. A. Corma, M.J. Climent, H. Carcia, J. Primo, Appl. Catal. A Gen. 59, 333 (1990)

    Article  CAS  Google Scholar 

  5. K. Nowinska, R. Fiedorow, J. Adamiec, J. Chem. Soc. Faraday Trans. 87, 749 (1991)

    Article  CAS  Google Scholar 

  6. W.C. Cheng, N.P. Luthra, J. Catal. 109, 163 (1988)

    Article  CAS  Google Scholar 

  7. K.M. Rao, R. Gobetto, R. Lannibello, A. Zecchina, J. Catal. 119, 512 (1989)

    Article  CAS  Google Scholar 

  8. V.M. Mastikhin, W. Terskikh, M.N. Timofeeva, O.P. Krivoruchko, J. Mol. Catal. A9, 135 (1995)

    Article  Google Scholar 

  9. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992)

    Article  CAS  Google Scholar 

  10. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  11. K. Moller, T. Bein, Chem. Mater. 10, 2950 (1998)

    Article  CAS  Google Scholar 

  12. A. Corma, Chem. Rev. 97, 2373 (1997)

    Article  CAS  Google Scholar 

  13. M. Grun, K.K. Unger, A. Matsumoto, K. Tsutsumi, Microporous Mesoporous Mater. 27, 207 (1999)

    Article  CAS  Google Scholar 

  14. B. Lindlar, A. Kogelbauer, P.J. Kooyman, R. Prins, Microporous Mesoporous Mater. 44–45, 89 (2001)

    Article  Google Scholar 

  15. U. Ciesla, F. Schuth, Microporous Mesoporous Mater. 27, 131 (1999)

    Article  CAS  Google Scholar 

  16. M. Jaroniec, M. Kruk, H.J. Shin, R. Ryoo, Y. Sakamoto, O. Terasaki, Microporous Mesoporous Mater. 48, 127 (2000)

    Article  Google Scholar 

  17. P. Selvam, S.K. Bhatia, C.G. Sonwane, Recent Ind. Eng. Chem. Res. 40, 3237 (2001)

    Article  CAS  Google Scholar 

  18. F. Marlow, D. Demuth, G. Stucky, F. Schueth, J. Phys. Chem. 99, 11–1306 (1995)

    Article  Google Scholar 

  19. W. Sun, Z. Zhao et al., Ind. Eng. Chem. Res. 39, 3717 (2000)

    Article  CAS  Google Scholar 

  20. Y. Liu, X. Ma, S. Wang, J. Gong, Appl. Catal. B 77, 125 (2007)

    Article  CAS  Google Scholar 

  21. D. Srinivas, R. Srivastava, P. Ratnasamy, Catal. Today 96, 127 (2004)

    Article  CAS  Google Scholar 

  22. W.M. Van Rhijn, D.E. De Vos, B.F. Sels, W.D. Bossaert, P.A. Jacobs, Chem. Commun. (3), 317–318 (1998). doi:10.1039/A707462J

  23. D.E. Lopez, K. Suwannakaran, D.A. Bruce, J.G. Goodwin Jr., J. Catal. 247, 43 (2007)

    Article  CAS  Google Scholar 

  24. S. Ramu, N. Lingaiah, B.L.A. Prabavathi Devi et al., Appl. Catal. 276, 163 (2004)

    Article  CAS  Google Scholar 

  25. B.M. Reddy, P.M. Sreekanth, V.R. Reddy, J. Mol. Catal. A Chem. 225, 71 (2005)

    Article  CAS  Google Scholar 

  26. D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin Jr., J. Catal. 247, 43 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pandurangan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedumaran, D., Pandurangan, A. Effect of tungsten loading on zirconia impregnated MCM-41 and its catalytic activity on transesterification reaction. J Porous Mater 20, 897–908 (2013). https://doi.org/10.1007/s10934-012-9667-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9667-x

Keywords

Navigation