Skip to main content
Log in

Adsorption and oxidation of high concentration toluene with activated carbon fibers

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Many of the factors influencing the adsorption of volatile organic compounds by activated carbon fibers (ACFs) have been widely studied. However, most of them were investigated at low concentrations (500 ppm or less) and at low adsorption temperatures (lower than 100 °C). This study was to determine simultaneously the oxidation and adsorption of toluene onto activated carbon fibers (ACFs) at high concentration and high adsorption temperatures. We tested three ACFs, four inlet concentrations of toluene (700, 1,200, 1,600, and 2,000 ppm), and four adsorption temperatures (25, 50, 75, and 200 °C). The composition and morphology of the ACFs were also analyzed using BET, FTIR, EA, and FESEM. The results indicated that the best toluene adsorption capacity was for 569 mg/g ACFs at a toluene concentration of 1,200 ppm and at 25 °C. A combination of low O content and high mesopore volume was desirable for ACFs with a high toluene adsorption capacity at high toluene concentrations. Moreover, the breakthrough time decreased with increasing toluene concentration, and the adsorption capacity of toluene increased significantly when the inlet concentration of toluene increased to 1,200 ppm. The data also indicated that the breakthrough time and the adsorption capacity of toluene decreased with increasing adsorption temperature. The outlet concentration of toluene did not reach 1,200 ppm when adsorption was saturated at 200 °C, as the oxygen functional groups on the ACF surface had reacted with toluene to form other compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Tancrede, R. Wilson, L. Zeise, E.A.C. Crouch, Atmos. Environ. 21, 2187 (1987)

    Article  CAS  Google Scholar 

  2. K.L. Foster, R.G. Fuerman, J. Economy, S.M. Larson, M.J. Rood, Chem. Mater. 4, 1068 (1992)

    Article  CAS  Google Scholar 

  3. M.P. Cal, S.M. Larson, M.J. Rood, Environ. Prog. 13, 26 (1994)

    Article  CAS  Google Scholar 

  4. M.A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Carbon 43, 1758 (2005)

    Article  Google Scholar 

  5. A.B. Fuertes, G. Marban, D.M. Nevskaia, Carbon 41, 87 (2003)

    Article  CAS  Google Scholar 

  6. Z.H. Huang, F. Kang, K.M. Liang, J. Hao, J. Hazard. Mater. B98, 107 (2003)

    Article  Google Scholar 

  7. J. Muñiz, G. Marbán, A.B. Fuertes, Appl. Catal. B Environ. 27, 27 (2000)

    Article  Google Scholar 

  8. S.J. Park, K.D. Kim, Carbon 39, 1741 (2001)

    Article  CAS  Google Scholar 

  9. Z. Yue, C.L. Mangun, J. Economy, Carbon 40, 1181 (2002)

    Article  CAS  Google Scholar 

  10. Y. Yang, M.H. Zhou, G. Xue, Z.X. Jiang, J. Porous Mat. 18, 379 (2011)

    Article  CAS  Google Scholar 

  11. V. Gaur, A. Sharma, N. Verma, Chem. Eng. Process. 45, 1 (2006)

    Article  CAS  Google Scholar 

  12. A.J. Romero-Anaya, M.A. Lillo-Ródenas, A. Linares-Solano, Carbon 48, 2625 (2010)

    Article  CAS  Google Scholar 

  13. F.Y. Yi, X.D. Lin, S.X. Chen, J. Porous Mat. 16, 521 (2009)

    Article  CAS  Google Scholar 

  14. C.L. Mangun, K.R. Benak, J. Economy, K.L. Foster, Carbon 39, 1809 (2001)

    Article  CAS  Google Scholar 

  15. D. Das, V. Gaur, N. Verma, Carbon 42, 2949 (2004)

    Article  CAS  Google Scholar 

  16. N. Mohan, G.K. Kannan, S. Upendra, R. Subha, N.S. Kumar, J. Hazard. Mater. 168, 777 (2009)

    Article  CAS  Google Scholar 

  17. X. Zhang, X. Zhao, J. Hu, C. Wei, H.T. Bi, J. Hazard. Mater. 186, 1816 (2011)

    Article  CAS  Google Scholar 

  18. M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, S. Cohn, W.J. Fisk, Build. Environ. 47, 357 (2012)

    Article  Google Scholar 

  19. K.H. Chi, S.H. Chang, C.H. Huang, H.C. Huang, M.B. Chang, Chemosphere 64, 1489 (2006)

    Article  CAS  Google Scholar 

  20. P.E. Fanning, M.A. Vannice, Carbon 31, 721 (1993)

    Article  CAS  Google Scholar 

  21. J.H. Yun, D.K. Choi, S.H. Kim, AIChE J. 45, 751 (1999)

    Article  CAS  Google Scholar 

  22. Y.C. Chiang, P.C. Chiang, E.E. Chang, J. Environ. Eng. 127, 54 (2001)

    Article  CAS  Google Scholar 

  23. H.C. Shin, J.W. Park, K. Park, H.C. Song, Environ. Pollut. 119, 227 (2002)

    Article  CAS  Google Scholar 

  24. T. García, R. Murillo, D. Cazorla-Amorós, A.M. Mastral, A. Linares-Solano, Carbon 42, 1683 (2004)

    Article  Google Scholar 

  25. X. Hu, B. King, D.D. Do, Gas Sep. Purif. 8, 175 (1994)

    Article  CAS  Google Scholar 

  26. X. Hu, B. King, D.D. Do, Gas Sep. Purif. 8, 187 (1994)

    Article  CAS  Google Scholar 

  27. Z.S. Liu, J. Environ. Eng. ASCE 132, 463 (2006)

    Article  CAS  Google Scholar 

  28. C.C. Huang, Y.C. Lin, F.C. Lu, Sep. Sci. Technol. 34, 555 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the National Science Council of the Republic of China (Taiwan) for financially supporting this research under Contract No. NSC 96–2211–E–131–019–MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Shu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CL., Cheng, YH., Liu, ZS. et al. Adsorption and oxidation of high concentration toluene with activated carbon fibers. J Porous Mater 20, 883–889 (2013). https://doi.org/10.1007/s10934-012-9665-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9665-z

Keywords

Navigation