Skip to main content
Log in

Photocatalytic decomposition of 2-propanol and acetone in air by nanocomposites of pre-formed TiO2 particles and mesoporous silica

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The photocatalytic efficiency in the degradations of gaseous 2-propanol and acetone has been studied on nanocomposite materials prepared by embedding well-crystallized titanium dioxide (TiO2) particles (Degussa P25) into surfactant-templated mesoporous silica. The composite materials adsorbed the organic substances considerably in dark conditions and decomposed them completely to CO2 under photoirradiation. The efficiency was influenced remarkably by the surface modification of TiO2 particles. According to the transmission electron microscope observations, using carbon-coated TiO2 particles gave a composite MCT-C with well-ordered channels of the mesoporous silica, but not all the TiO2 particles were embedded in silica. MCT-C showed a high CO2 production rate comparable to that of pristine TiO2 (P25) when the concentrations of gaseous 2-propanol and acetone were as low as several ppm. On the other hand, using n-octadecyl-grafted TiO2 particles resulted in a composite MCT-S in which most of the TiO2 particles were well embedded in mesoporous silica, but the degree of channel-ordering was comparatively lower than that in MCT-C. The CO2 production rate for MCT-S was lower than that for P25. This is probably due to the deactivation of TiO2 surface by the silane-coupling reagent and/or the disorder of the mesopore channels. These composite photocatalysts could suppress the emission of unhealthy degradation products by adsorptive capacity of mesoporous silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. B. Kraeutler, A.J. Bard, J. Am. Chem. Soc. 100, 4317 (1979)

    Article  Google Scholar 

  3. D.F. Ollis, E. Pelizzetti, N. Serpone, Environ. Sci. Technol. 25, 1522 (1991)

    Article  CAS  Google Scholar 

  4. M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341 (1993)

    Article  CAS  Google Scholar 

  5. M.R. Hoffman, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  6. A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49 (1995)

    Article  CAS  Google Scholar 

  7. A.L. Linsebigler, G. Lu, J.T. Yates Jr, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  8. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431 (1997)

    Article  CAS  Google Scholar 

  9. M. Suzuki, C.C. Waraksa, T.E. Mallouk, H. Nakayama, K. Hanabusa, J. Phys. Chem. B106, 4227 (2002)

    Google Scholar 

  10. W. Kubo, T. Tatsuma, A. Fujishima, H. Kobayashi, J. Phys. Chem. B108, 3005 (2004)

    Google Scholar 

  11. H. Irie, K. Sunada, K. Hashimoto, Electrochemistry. 72, 807 (2004)

    CAS  Google Scholar 

  12. L.I. Halaoui, N.M. Abrams, T.E. Mallouk, J. Phys. Chem. B109, 6334 (2005)

    Google Scholar 

  13. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. Part 1 44, 8269 (2005)

    Article  Google Scholar 

  14. M. Gratzel, Inorg. Chem. 44, 6841 (2005)

    Article  Google Scholar 

  15. A. Fujishima, X.T. Zhang, Comptes Rendus. Chimie. 9, 750 (2006)

    Article  CAS  Google Scholar 

  16. T. Ibusuki, K. Takeuchi, J. Mol. Catal. 88, 93 (1994)

    Article  CAS  Google Scholar 

  17. S. Sampath, H. Uchida, H. Yoneyama, J. Catal. 149, 189 (1994)

    Article  CAS  Google Scholar 

  18. N. Takeda, T. Torimoto, S. Sampath, S. Kuwabata, H. Yoneyama, J. Phys. Chem. 99, 9986 (1995)

    Article  CAS  Google Scholar 

  19. H. Uchida, S. Itoh, H. Yoneyama, Chem. Lett. 1995 (1993)

  20. T. Torimoto, S. Ito, S. Kuwabata, H. Yoneyama, Environ. Sci. Technol. 30, 1275 (1996)

    Article  CAS  Google Scholar 

  21. W. Zhang, T.J. Pinnavaia, Catal. Lett. 38, 261 (1996)

    Article  CAS  Google Scholar 

  22. E.P. Reddy, L. Davydov, P. Smirniotis, Appl. Catal. B –Environ. 42, 1 (2003)

    Article  CAS  Google Scholar 

  23. L. Davydov, E.P. Reddy, P. France, G. Smirniotis, J. Catal. 203, 157 (2001))

    Article  CAS  Google Scholar 

  24. A. Corma, M. Domine, J. A. Gaona, J. L. Jorda, M. T. Navarro, F. Rey, J. Perez-Pariente, J. Tsuji, B. McCulloch L. T. Nemeth, Chem. Commun. 2211 (1998)

  25. B.J. Aronson, C.F. Blanford, A. Stein, Chem. Mater. 9, 2842 (1997)

    Article  CAS  Google Scholar 

  26. K. A. Koyano and T. Tatsumi, Chem. Commun. 145 (1996)

  27. K. Inumaru, J. Kiyoto, and S. Yamanaka, Chem. Commun. 903 (2000)

  28. K. Inumaru, Y. Inoue, S. Kakii, T. Nakano, S. Yamanaka, Chem. Lett. 32, 1110 (2003)

    Article  CAS  Google Scholar 

  29. K. Inumaru, Y. Inoue, S. Kakii, T. Nakano, S. Yamanaka, Phys. Chem. Chem. Phys. 6, 3133 (2004)

    Article  CAS  Google Scholar 

  30. T. Kasahara, K. Inumaru, S. Yamanaka, Micropor. Mesopor. Mater. 76, 123 (2004)

    Article  CAS  Google Scholar 

  31. K. Inumaru, M. Murashima, T. Kasahara, S. Yamanaka, Appl. Catal. B –Emviron. 52, 275 (2004)

    Article  CAS  Google Scholar 

  32. K. Yamaguchi, K. Inumaru, Y. Oumi, T. Sano, S. Yamanaka, Micropor. Mesopor. Mater. 117, 350 (2005)

    Article  Google Scholar 

  33. K. Inumaru, T. Kasahara, M. Yasui, S. Yamanaka, Chem. Commun. 2131 (2005)

  34. K. Inumaru, M. Yasui, T. Kasahara, Y. Kubota, K. Yamaguchi, A. Yasuda, S. Yamanaka, J. Mater. Chem. 21, 12117 (2011)

    Article  CAS  Google Scholar 

  35. Y.-G. Han, T. Kusunose, T. Sekino, Chem. Lett. 37, 858 (2008)

    Article  CAS  Google Scholar 

  36. Y. Ohko, K. Hashimoto, A. Fujishima, J. Phys. Chem. B101, 8057 (1997)

    Article  Google Scholar 

  37. Y. Ohko, A. Fujishima, K. Hashimoto, J. Phys. Chem. B102, 1724 (1998)

    Google Scholar 

  38. W. Xu, D. Raftery, J. Catal. 204, 110 (2001)

    Article  CAS  Google Scholar 

  39. M. El-Maazawi, A.N. Finken, A.B. Nair, V.H. Grassiany, J. Catal. 191, 138 (2000)

    Article  CAS  Google Scholar 

  40. S. Ikeda, H. Kobayashi, T. Sugita, Y. Ikoma, T. Harada, M. Matsumura, Appl. Catal. A General 363, 220 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Makoto Maeda of Hiroshima University for his help with the TEM measurements. This study was supported by Grant-in-Aid for Scientific Research (B) (Nos. 20350095 and 17360389) from the Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Fukuoka or Kei Inumaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, H., Kubota, Y., Yamaguchi, K. et al. Photocatalytic decomposition of 2-propanol and acetone in air by nanocomposites of pre-formed TiO2 particles and mesoporous silica. J Porous Mater 20, 693–699 (2013). https://doi.org/10.1007/s10934-012-9643-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9643-5

Keywords

Navigation