Skip to main content
Log in

Pore structure control of Si3N4 ceramics based on particle-stabilized foams

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous Si3N4 ceramics with open, closed pores and nest-like structures were prepared by direct foaming method, and the stability of bubbles and the microstructures of sintered Si3N4 foam ceramics were investigated. The bubbles produced by short-chain amphiphiles have higher stability as compared with that produced by long-chain surfactants. Si3N4 ceramic foams using short-chain amphiphiles are particle-stabilized one, porous Si3N4 ceramics with open and closed pores can be easily prepared with this method, and the nest-like microstructure in Si3N4 foam ceramics is achieved at high gas-pressure sintering conditions. The decrease of flexural strength due to the increase of porosity can be weakened by decreasing pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Kawai, T. Matsuura, A. Yamakawa, J. Mater. Sci. 34, 893 (1999)

    Article  CAS  Google Scholar 

  2. J.F. Yang, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 85, 1512 (2002)

    Article  CAS  Google Scholar 

  3. J.L. Yu, H.J. Wang, J.M. Hou, J. Ceram. Process. Res. 9, 624 (2008)

    Google Scholar 

  4. T. Ohji, Mater. Sci. Eng. A 498, 5 (2008)

    Article  Google Scholar 

  5. J.L. Yang, J.L. Yu, Y. Huang, J. Eur. Ceram. Soc. 34, 2569 (2011)

    Article  Google Scholar 

  6. O. Lyckfeldt, J.M.F. Ferreira, J. Eur. Ceram. Soc. 18, 131 (1998)

    Article  CAS  Google Scholar 

  7. J.L. Yu, J.L. Yang, Y. Huang, Mater. Lett. 65, 1801 (2011)

    Article  CAS  Google Scholar 

  8. H.R. Ramay, M.Q. Zhang, Biomaterials 24, 3293 (2003)

    Article  CAS  Google Scholar 

  9. T. Fukasawa, Z.Y. Deng, M. Ando, J. Am. Ceram. Soc. 85, 2151 (2002)

    Article  CAS  Google Scholar 

  10. Y. Zhang, H.J. Wang, Z.H. Jin, Rare Metal. Mater. Eng. 33, 655 (2004)

    CAS  Google Scholar 

  11. W. Zhang, H.J. Wang, Z.H. Jin, J. Mater. Sci. Technol. 21, 894 (2005)

    CAS  Google Scholar 

  12. J.F. Yang, G.J. Zhang, N. Kondo, J. Am. Ceram. Soc. 88, 1030 (2005)

    Article  CAS  Google Scholar 

  13. J.L. Yu, H.J. Wang, J. Zhang, J. Sol-Gel. Sci. Technol. 53, 515 (2010)

    Article  CAS  Google Scholar 

  14. J.L. Yu, H.J. Wang, H. Zeng, Ceram. Int. 35, 1039 (2009)

    Article  CAS  Google Scholar 

  15. A.R. Studart, U.T. Gonzenbach, E. Tervoort, J. Am. Ceram. Soc. 89, 1771 (2006)

    Article  CAS  Google Scholar 

  16. F.S. Ortega, P. Sepulveda, M.D.M. Innocentini, Am. Ceram. Soc. Bull. 80, 37 (2001)

    CAS  Google Scholar 

  17. B.P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002)

    Article  CAS  Google Scholar 

  18. Z.P. Du, B.P. Binks, E. Dickinson, Langmuir 19, 3106 (2003)

    Article  CAS  Google Scholar 

  19. U.T. Gonzenbach, A. Studart, E. Tervoort, Langmuir 22, 10983 (2006)

    Article  CAS  Google Scholar 

  20. I. Akartuna, A. Studart, E. Tervoort, Langmuir 24, 7161 (2008)

    Article  CAS  Google Scholar 

  21. U.T. Gonzenbach, A.R. Studart, D. Steinlin, J. Am. Ceram. Soc. 90, 3407 (2007)

    Article  CAS  Google Scholar 

  22. U.T. Gonzenbach, A.R. Studart, L.J. Gauckler, Langmuir 23, 1025 (2007)

    Article  CAS  Google Scholar 

  23. U.T. Gonzenbach, A.R. Studart, E. Tervoort, J. Am. Ceram. Soc. 90, 16 (2007)

    Article  CAS  Google Scholar 

  24. S. Rami-shojaei, C. Vachier, C. Schmitt, Image Vis. Comput. 27, 609 (2009)

    Article  Google Scholar 

  25. C. Guillerme, W. Loisel, D. Bertrand, J. Texture Stud. 24, 287 (1993)

    Article  Google Scholar 

  26. P. Sepulveda, J.G.P. Binner, J. Eur. Ceram. Soc. 19, 2059 (1999)

    Article  CAS  Google Scholar 

  27. Y. Inagaki, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 83, 1807 (2000)

    Article  CAS  Google Scholar 

  28. K.P. Plucknett, M. Quinlan, L. Garrido, Mater. Sci. Eng. A 489, 337 (2008)

    Article  Google Scholar 

  29. J.F. Yang, Z.Y. Deng, T. Ohji, J. Eur. Ceram. Soc. 23, 371 (2003)

    Article  CAS  Google Scholar 

  30. D.V. Tuyen, J.H. Yoo, H.D. Kim, Ceram. Int. 36, 2427 (2010)

    Article  CAS  Google Scholar 

  31. R.L. Coble, W.D. Kingery, J. Am. Ceram. Soc. 39, 377 (1956)

    Article  Google Scholar 

  32. E. Ryshkewitch, J. Am. Ceram. Soc. 36, 65 (1953)

    Article  Google Scholar 

Download references

Acknowledgments

Our research work presented in this paper is supported by the National High Technology Research and Development Program of China (Grant No 2010AA03A408), and Beijing Sci-tech Plan of China (Grant No 20101092117). The authors are grateful for these grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanli Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Yang, J., Li, H. et al. Pore structure control of Si3N4 ceramics based on particle-stabilized foams. J Porous Mater 19, 883–888 (2012). https://doi.org/10.1007/s10934-011-9545-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9545-y

Keywords

Navigation