Skip to main content
Log in

Preparation of ordered porous carbon from tea by chemical activation and its use in Cr(VI) adsorption

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Ordered porous carbon was prepared from a new carbon precursor—the tea leaves, the most widely used beverage worldwide by a chemical activation process. We obtained well developed spherical interlinked meso and micro pores with uniform pore morphology and high surface area from green, black and waste tea by NaOH as well as H3PO4 activation process. The carbon obtained from green tea by H3PO4 activation had the highest BET surface area of 1,285 m2g−1 with total pore volume of 0.6243 mL g−1. The as prepared porous carbon showed high adsorption efficiency of Cr(VI) adsorption from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Molina-Sabio, F. Rodríguez-Reinoso, F. Caturla, M.J. Sellés, Porosity in granular carbons activated with phosphoric acid. Carbon 33(8), 1105–1113 (1995)

    Article  CAS  Google Scholar 

  2. J. Laine, S. Yunes, Effect of the preparation method on the pore size distribution of activated carbon from coconut shell. Carbon 30(4), 601–604 (1992)

    Article  CAS  Google Scholar 

  3. M. Jagtoyen, F. Derbyshire, Some considerations of the origins of porosity in carbons from chemically activated wood. Carbon 31(7), 1185–1192 (1993)

    Article  CAS  Google Scholar 

  4. M. Molina-Sabio, F. Rodríguez-Reinoso, F. Caturla, M.J. Sellés, Porosity in granular carbons activated with phosphoric acid. Carbon 34, 457–462 (1996)

    Article  CAS  Google Scholar 

  5. R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon (Marcel Dekker, New York, 1988)

    Google Scholar 

  6. S.H. Wu, P. Pendleton, Adsorption of anionic surfactant by activated carbon: effect of surface chemistry, ionic strength, and hydrophobicity. J. Colloid Interface Sci. 243, 306–315 (2001)

    Article  CAS  Google Scholar 

  7. D.E. Cumings, S. Fendorf, N. Singh, B.M. Peyton, T.S. Magnuson, Reduction of Cr(VI) der acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum. Environ. Sci. Technol. 41, 146–152 (2007)

    Article  Google Scholar 

  8. J. Anandkumar, B. Mandal, Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. J. Hazard. Mater. 168, 633–640 (2009)

    Article  CAS  Google Scholar 

  9. J.W. Paterson, Wastewater Treatment Technology (Ann Arbour Science, Michigan, 1975), pp. 43–58

    Google Scholar 

  10. G. Tiravanti, D. Petruzzelli, R. Passino, Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36, 197–207 (1997)

    CAS  Google Scholar 

  11. C.A. Kozlowski, W. Walkowiak, Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes. Water Res. 36, 4870–4876 (2002)

    Article  CAS  Google Scholar 

  12. G. Ghosh, P.K. Bhattacharya, Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chem. Eng. J. 119, 45–53 (2006)

    Article  CAS  Google Scholar 

  13. K.A. Matis, P. Mavros, Recovery of metals by ion flotation from dilute aqueous solutions. Sep. Purif. Methods 20, 1–48 (1991)

    Article  CAS  Google Scholar 

  14. J.R. Parga, D.L. Cocke, V. Valverde, J.A.G. Gomes, M. Kesmez, H. Moreno, M. Weir, D. Mencer, Characterization of electrocoagulation for removal of chromium and arsenic. Chem. Eng. Technol. 28, 605–612 (2005)

    Article  CAS  Google Scholar 

  15. E. Salazar, M.I. Ortiz, A.M. Urtiaga, Equilibrium, kinetics of Cr(V1) extraction with aliquat 336. Ind. Eng. Chem. Res. 31, 1516–1522 (1992)

    Article  CAS  Google Scholar 

  16. Z. Song, C.J. Williams, R.G.J. Edyvean, Sedimentation of tannery wastewater. Water Res. 34, 2171–2176 (2000)

    Article  CAS  Google Scholar 

  17. D.M. Roundhill, H.F. Koch, Methods and techniques for the selective extraction and recovery of oxoanions. Chem Soc. Rev. 31, 60–67 (2002)

    Article  CAS  Google Scholar 

  18. J.M.N. Chen, O.J.N. Hao, Microbial chromium(VI) reduction. Crit. Rev. Environ. Sci. Technol. 28, 219–251 (1998)

    Article  Google Scholar 

  19. H. Ozaki, K. Sharma, W. Saktaywin, Performance of an ultra-low pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144, 287–294 (2002)

    Article  CAS  Google Scholar 

  20. T. Mohammadi, A. Moheb, M. Sadrzadeh, A. Razmi, Modeling of metal ion removal from wastewater by electrodialysis. Sep. Purif. Technol. 41, 73–82 (2005)

    Article  CAS  Google Scholar 

  21. D. Mohan, C.U. Pittman Jr, Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811 (2006)

    Article  CAS  Google Scholar 

  22. M. Tels, Advances in treating heavy metals containing wastes. Resour. Conserv. 14, 71–92 (1987)

    Article  CAS  Google Scholar 

  23. L.R. Radovic, C. Moreno-Castilla, J. Rivera-Utrilla, Carbon Materials as Adsorbents in Aqueous Solutions, in Chemistry and Physics of Carbon, vol. 27, ed. by L.R. Radovic (Marcel Dekker, New York, 2001), pp. 227–405

    Google Scholar 

  24. B.M.W.P.K. Amarasinghe, R.A. Williams, Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299–309 (2007)

    Article  CAS  Google Scholar 

  25. D. Borah, S. Satokawa, S. Kato, T. Kojima, Characterization of chemically modified carbon black for sorption application. Appl. Surf. Sci. 254, 3049–3056 (2008)

    Article  CAS  Google Scholar 

  26. R. Yavuz, I. Orbak, N. Karatepe, Factors affecting the adsorption of chromium (VI) on activated carbon. J. Environ. Sci. Health A 41, 1967–1980 (2006)

    CAS  Google Scholar 

  27. H. Teng, T.S. Yeh, L.Y. Hsu, Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 36, 1387–1395 (1998)

    Article  CAS  Google Scholar 

  28. F. Rodriguez-Reinoso, M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30, 1111–1118 (1992)

    Article  CAS  Google Scholar 

  29. J. Laine, A. Calafat, M. Labady, Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid. Carbon 27, 191–195 (1989)

    Article  CAS  Google Scholar 

  30. M. Molina-Sabio, F. Rodriguez-Reinoso, F. Caturla, M.J. Selles, Development of porosity in combined phosphoric acid-carbon dioxide activation. Carbon 34, 457–462 (1996)

    Article  CAS  Google Scholar 

  31. M. Molina-Sabio, F. Rodriguez-Reinoso, Role of chemical activation in the development of carbon porosity. Colloids Surf. A Physiochem. Eng. Asp. 241, 15–25 (2004)

    Article  CAS  Google Scholar 

  32. K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan, Preparation of high surface area activated carbon from coconut shell using microwave heating. Bioresour. Technol. 101, 6136–6169 (2010)

    Article  Google Scholar 

  33. Y. Guo, D.A. Rockstraw, Physical and chemical properties of carbons synthesized from xylan, cellulose, and kraft lignin by H3PO4 activation. Carbon 44, 464–1475 (2006)

    Google Scholar 

Download references

Acknowledgments

Financial support from the Ministry of Environment and Forest, India (grant no. 19-27/2008-RE) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prodeep Phukan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borah, L., Senapati, K.K., Borgohain, C. et al. Preparation of ordered porous carbon from tea by chemical activation and its use in Cr(VI) adsorption. J Porous Mater 19, 767–774 (2012). https://doi.org/10.1007/s10934-011-9529-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9529-y

Keywords

Navigation