Skip to main content

Advertisement

Log in

Effect of hydroxyapatite and tricalcium phosphate addition on protein foaming-consolidation porous alumina

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous alumina-hydroxyapatite (HA) and alumina-tricalcium phosphate (TCP) composites have been fabricated to investigate the effect of HA and β-TCP addition on protein foaming-consolidation derived porous alumina. HA and β-TCP loadings along with yolk content, starch content, and sintering temperature were varied to modulate performance of the porous composites. The rheological behavior of slurry shifted from pseudoplastic flow to a Newtonian fluid with increasing yolk concentration. The foaming capacity of slurry increased with yolk addition. The addition of starch into slurry resulted in bigger pore size and avoided the porous bodies from cracks. The shrinkage of sintered bodies increased with increasing HA loading, but decreased with increasing β-TCP loading. The compressive strength of porous alumina-HA body was found 2.9 MPa at 45.8% porosity and 20.4 MPa at 36.8% porosity. The increasing porosity of porous alumina-TCP body from 56.1 to 61.6% improved the compressive strength from 3.1 to 4.2 MPa. Increasing sintering temperature resulted in large grain size among powder particles, thus improving the compressive strength of porous bodies. Preliminary results of DF-1 cells culture on the surface of porous alumina and alumina-TCP samples are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.L. Eckert, M. Mathey, J. Mayer, F.R. Homberger, P.E. Thomann, P. Groscurth, E. Wintermantel, Biomaterials 21, 63 (2000)

    Article  CAS  Google Scholar 

  2. J. Bieniek, Z. Swiecki, Clin. Orthop. Relat. Res. 271, 88 (1991)

    Google Scholar 

  3. I.C. Kang, T.S. Kim, K.K. Ko, H.Y. Song, T. Goto, B.T. Lee, Mater. Lett. 59, 69 (2005)

    Article  CAS  Google Scholar 

  4. S.M. Best, A.E. Porter, E.S. Thian, J. Huang, J. Eur. Ceram. Soc. 28, 1319 (2008)

    Article  CAS  Google Scholar 

  5. W. Frieβ, J. Warner, Biomedical applications, in Handbook of Porous Solids, ed. by F. Schüth, K.S.W. Sing, J. Weitkamp (Wiley, Weinheim, 2002), p. 2923

    Chapter  Google Scholar 

  6. Y.K. Jun, W.H. Kim, O.K. Kweon, S.H. Hong, Biomaterials 24, 3731 (2003)

    Article  CAS  Google Scholar 

  7. I. Sopyan, M. Mel, S. Ramesh, K.A. Khalid, Sci. Technol. Adv. Mat. 8, 116 (2007)

    Article  CAS  Google Scholar 

  8. T.A. Rahim, I. Sopyan, Recent Pat. Biomed. Eng. 1, 213 (2008)

    Google Scholar 

  9. K. Pal, S. Pal, Mater. Manuf. Process. 21, 325 (2006)

    Article  CAS  Google Scholar 

  10. M. Saki, M.K. Narbat, A. Samadikuchaksaraei, H.B. Ghafouri, F. Gorjipour, Yakhteh 11, 55 (2009)

    CAS  Google Scholar 

  11. A. Fadli, I. Sopyan, Mater. Res. Innovat. 13, 327 (2009)

    Article  CAS  Google Scholar 

  12. A. Fadli, I. Sopyan, J. Porous. Mater. 18, 195 (2011)

    Article  CAS  Google Scholar 

  13. A. Fadli, I. Sopyan, M. Mel, Z. Ahmad, Asia Pac. J. Chem. Eng. (2011) doi:10.1002/apj.526

  14. X. Mao, S. Shimai, S. Wang, J. Eur. Ceram. Soc. 28, 2217 (2008)

    Google Scholar 

  15. S. Dhara, P. Bhargava, J. Am. Ceram. Soc. 88, 547 (2005)

    Article  CAS  Google Scholar 

  16. W.D. Teng, M.J. Edirisinghe, J.R.G. Evans, J. Am. Ceram. Soc. 80, 486 (1997)

    Article  CAS  Google Scholar 

  17. K. Prabhakaran, S. Ananthakumar, C. Pavithran, J. Mater. Sci. 36, 4827 (2001)

    Article  CAS  Google Scholar 

  18. O. Lyckfeldt, J. Brandt, S. Lesca, J. Eur. Ceram. Soc. 20, 2552 (2000)

    Article  Google Scholar 

  19. L.A. Glaser, A.T. Paulson, R.A. Speers, R.Y. Yada, D. Rousseau, Food Hydrocolloids 21, 495 (2007)

    Article  CAS  Google Scholar 

  20. L.A. Brown, C.F. Zukoski, AIChE Journal 48, 492 (2002)

    Article  CAS  Google Scholar 

  21. L.J. Gibson, M.F. Ashby, Cellular Solids, Structure and Properties, 2nd edn edn. (Cambridge Univ. Press, Cambridge, 1997), pp. 429–452

    Google Scholar 

  22. G. Willmann, Interceram 42, 206 (1993)

    CAS  Google Scholar 

  23. A. Banarjee, A. Bandyopadhyay, S. Bose, Mater. Sci. Eng. C 27, 729 (2007)

    Article  Google Scholar 

  24. S. Bose, J. Darsell, H.L. Hosick, L. Yang, D.K. Sarkar, A. Bandyopadhyay, J. Mater. Sci.-Mater. Med. 13, 23 (2002)

    Article  CAS  Google Scholar 

  25. H.S. Costa, A.A.P. Mansur, E.F.B. Stancioli, M.M. Pereira, H.S. Mansur. J. Mater. Sci. 43, 510 (2008)

    CAS  Google Scholar 

Download references

Acknowledgments

One of the authors AF is thankful to the Ministry of National Education, Republic of Indonesia (DIKTI) for scholarship (No. 1373.43/D4.4/2010). This work is partially supported by IIUM Endowment Fund project No. EDW A11-072-0863.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iis Sopyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sopyan, I., Fadli, A. & Mel, M. Effect of hydroxyapatite and tricalcium phosphate addition on protein foaming-consolidation porous alumina. J Porous Mater 19, 733–743 (2012). https://doi.org/10.1007/s10934-011-9525-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9525-2

Keywords

Navigation