Skip to main content
Log in

Grand canonical Monte Carlo simulation and volumetric equilibrium studies for adsorption of nitrogen, oxygen, and argon in cadmium (II) exchanged zeolite A

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The adsorption of nitrogen, oxygen and argon has been studied in cadmium (II) ions exchanged zeolite A at 288.0 and 303.0 K. Experimentally measured adsorption isotherms are compared with theoretically calculated data using grand canonical Monte Carlo (GCMC) simulation. Nitrogen showed higher adsorption capacity and selectivity than oxygen and argon in these zeolite samples. The cadmium exchanged zeolite A showed increased adsorption capacity for nitrogen, oxygen, and argon with increase in cadmium (II) exchange levels. Isosteric heat of adsorption data showed stronger interactions of nitrogen molecules with cadmium (II) cations in zeolite samples. These observations have been explained in terms of higher electrostatic interaction of nitrogen with extra framework zeolite cations. The selectivity of oxygen over argon is explained in terms of its higher interaction of oxygen with cadmium exchanged zeolites than argon molecules. Heats of adsorption and adsorption isotherms were also calculated using grand canonical Monte Carlo simulation algorithm. Simulation studies expectedly show the proximity of nitrogen molecules to the locations of extra framework sodium and cadmium cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.T. Yang, Adsorbents: Fundamentals and Applications (Wiley-Interscience, New York, 2003)

    Book  Google Scholar 

  2. W. Breck, Zeolites Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974)

    Google Scholar 

  3. R.V. Jasra, N.V. Choudary, S.G.T. Bhat, Sep. Sci. Technol. 26, 885–930 (1991)

    Article  CAS  Google Scholar 

  4. R.T. Yang, Gas Separation by Adsorption Processes (Imperial College Press, London, 1997)

    Google Scholar 

  5. D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption (Wiley-VCH, New York, 1994)

    Google Scholar 

  6. R.V. Jasra, N.V. Choudary, S.G.T. Bhat, Ind. Eng. Chem. Res. 35, 4221–4229 (1996)

    Article  CAS  Google Scholar 

  7. C.C. Chao, US patent 4859217 (1989)

  8. C.C. Chao, J.D. Sherman, J.T. Mullhaupt, C.M. Bolinger, US Patent 5174979 (1992)

  9. C.G. Coe, J.F. Kirner, R. Pierantozzi, T.R. White, US Patent 5152813 (1992)

  10. S.U. Rege, R.T. Yang, Ind. Eng. Chem. Res. 36, 5358–5365 (1997)

    Article  CAS  Google Scholar 

  11. K.P. Prasanth, R.S. Pillai, H.C. Bajaj, R.V. Jasra, H.D. Chung, T.H. Kim, S.D. Song, Int. J. Hydrogen Energy 33, 735 (2008)

    Article  CAS  Google Scholar 

  12. J. Sebastian, R.V. Jasra, Chem. Commun. 26, 8–269 (2003)

    Google Scholar 

  13. J. Sebastian, R.V. Jasra, US patent 6572838 (2003)

  14. J. Sebastian, R.S. Pillai, S.A. Peter, R.V. Jasra, Ind. Eng. Chem. Res. 46, 6293–6302 (2007)

    Article  CAS  Google Scholar 

  15. R.S. Pillai, J. Sebastian, R.V. Jasra, J. Porous. Mater. 18, 113–124 (2011)

    Article  CAS  Google Scholar 

  16. J. Sebastian, R.V. Jasra, Ind. Eng. Chem. Res. 44, 8014–8024 (2005)

    Article  CAS  Google Scholar 

  17. N. Chen, R.T. Yang, Ind. Eng. Chem. Res. 35, 4020–4027 (1996)

    Article  CAS  Google Scholar 

  18. N.D. Hutson, D.A. Reisner, R.T. Yang, B.H. Toby, Chem. Mater. 12, 3020–3031 (2000)

    Article  CAS  Google Scholar 

  19. J. Sebastian, S.A. Peter, R.V. Jasra, Langmuir 21, 11220–11225 (2005)

    Article  CAS  Google Scholar 

  20. R.V. Jasra, C.D. Chudasama, US patent 0090380 A1 (2005)

  21. A. Jayaraman, R.T. Yang, S.G.T. Bhat, N.V. Choudary, Adsorption 8, 271–278 (2002)

    Article  CAS  Google Scholar 

  22. D. Nicholson, R.J.-M. Pellenq, Adv. Colloid Interface Sci. 76–77, 179–202 (1998)

    Article  Google Scholar 

  23. A.H. Fuchs, A.K. Cheetham, J. Phys, Chem. B 105, 7375–7383 (2001)

    Article  CAS  Google Scholar 

  24. D.M. Razmus, C.K. Hall, AIChE J. 37, 769–779 (1991)

    Article  CAS  Google Scholar 

  25. K. Watanabe, N. Austin, M.R. Stapleton, Mol. Simul. 15, 197–221 (1995)

    Article  CAS  Google Scholar 

  26. N.D. Hutson, S.C. Zajic, R.T. Yang, Ind. Eng. Chem. Res. 39, 1775–1780 (2000)

    Article  CAS  Google Scholar 

  27. A.J. Richards, K. Watanabe, N. Austin, M.R. Stapleton, J. Porous Mater. 2, 43–49 (1995)

    Article  CAS  Google Scholar 

  28. R.S. Pillai, S.A. Peter, R.V. Jasra, Langmuir 23, 8899–8908 (2007)

    Article  CAS  Google Scholar 

  29. K.S.W. Sing, in Characterization of Powder Surfaces, ed. by G.D. Parfitt, K.S.W. Sing (Academic Press, London, 1976)

  30. J.J. Pluth, J.V. Smith, J. Am. Chem. Soc. 102, 4704–4708 (1980)

    Article  CAS  Google Scholar 

  31. E.Y. Choi, Y. Kim, Y.W. Han, K. Seff, Microporous Mesoporous Mater. 41, 61–68 (2000)

    Article  CAS  Google Scholar 

  32. E. de Burchart, Studies on Zeolites: Molecular Mechanics, Framework Stability and Crystal Growth, Ph. D thesis table I, Chapter XII, 1992

  33. Cerius2 User Guide, Forcefield-Based Simulations. (Molecular Simulations Inc., San Diego, 1997)

  34. S. Murad, K.E. Gubbins, in Computer Modeling of Matter, ed. by P. Lykos, ACS Symposium Series 86 (American Chemical Society, Washington DC, 1978), p 62

  35. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987)

    Google Scholar 

  36. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  CAS  Google Scholar 

  37. G.J. Kramer, N.P. Farragher, B.W.H. van Beeset, R.A. van Santen, Phys Rev. B 43, 5068–5080 (1991)

    Article  CAS  Google Scholar 

  38. G. Maurin, P. Llewellyn, T. Poyet, B. Kuchta, J. Phys. Chem. B 109, 125 (2005)

    Article  CAS  Google Scholar 

  39. D.R. Lide, CRC Hand Book of Chemistry and Physics, 90th edn. (The Chemical Rubber Co., Cleveland, 2009)

    Google Scholar 

  40. J. Chatt, L.A. Duncanson, J. Chem. Soc. 293, 9–2947 (1953)

    Google Scholar 

  41. Y.H. Yeon, Y. Kim, S.H. Song, K. Seff, J. Phys. Chem. B 101, 2138–2142 (1997)

    Google Scholar 

  42. Y. Kim, K. Seff, J. Am. Chem. Soc. 100, 175–183 (1978)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly admire the financial assistance and support from Council of Scientific and Industrial Research (CSIR), New Delhi. R.S.P. thanks to CSIR, New Delhi, India for financial assistance in the form of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raksh Vir Jasra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillai, R.S., Sebastian, J. & Jasra, R.V. Grand canonical Monte Carlo simulation and volumetric equilibrium studies for adsorption of nitrogen, oxygen, and argon in cadmium (II) exchanged zeolite A. J Porous Mater 19, 683–693 (2012). https://doi.org/10.1007/s10934-011-9520-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9520-7

Keywords

Navigation