Skip to main content
Log in

Hydrogen sorption in transition metal exchanged zeolite Y: volumetric measurements and simulation study

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hydrogen adsorption capacities in zeolite Y and its nickel, palladium, rhodium and ruthenium exchanged forms were investigated at 77 K up to 101.3 kPa and 303 K up to 4,000 kPa using a static volumetric adsorption system. Hydrogen adsorption at 77 K for NaY and for Ni, Pd, Rh and Ru exchanged zeolite Y was found to be reversible with pressure. The chemisorption of hydrogen was observed at 303 K for Ni, Pd, Rh and Ru exchanged zeolite Y. Rhodium exchange zeolite Y showed the highest hydrogen adsorption capacity of 1.19 and 0.51 wt% at 77 and 303 K up to 101.3 kpa and 4,000 kpa, respectively. Grand canonical Monte Carlo simulations were also performed to study the adsorption of hydrogen in these zeolites at 77 K as well as 303 K. The simulated adsorption isotherms at 77 K are comparable to experimentally measured isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Ogden, Assessments of renewable hydrogen energy systems, in Proceedings of the Department of energy/National renewable energy laboratory (DOE/NREL) hydrogen program review Meeting, pp. 163–186. May 4–6, 1993

  2. C.E. Thomas, I.F. Kuhn, B.D. James, F.D. Lomax, G.N. Baum, Int. Hydrogen Energy 23, 507 (1998)

    Article  CAS  Google Scholar 

  3. L. Schlapbach, A. Zuttel, Nature 414, 353 (2001)

    Article  CAS  Google Scholar 

  4. A. Züttel, Mater. Today 6, 24 (2003)

    Article  Google Scholar 

  5. F. Schüth, B. Bogdanovic, M. Felderhoff, Chemm. Commun. 20, 2249 (2004)

    Article  Google Scholar 

  6. A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386, 377 (1997)

    Article  CAS  Google Scholar 

  7. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’keeffe, O.M. Yaghi, Science 300, 1127 (2003)

    Article  CAS  Google Scholar 

  8. D. Sun, S. Ma, Y. Ke, D.J. Collins, H.C. Zhou, J. Am. Chem. Soc. 128, 3896 (2006)

    Article  CAS  Google Scholar 

  9. K.P. Prasanth, R.S. Pillai, H.C. Bajaj, R.V. Jasra, H.D. Chung, T.H. Kim, S.D. Song, Int. J. Hydrogen Energy 33, 735 (2008)

    Article  CAS  Google Scholar 

  10. K.P. Prasanth, R.S. Pillai, S.A. Peter, H.C. Bajaj, R.V. Jasra, H.D. Chung, T.H. Kim, S.D. Song, J. Alloys Compd. 466, 439 (2008)

    Article  CAS  Google Scholar 

  11. H.W. Langmi, D. Book, A. Walton, S.R. Johnson, M.M. Al-Mamouri, J.D. Speight, P.P. Edwards, I.R. Harris, P.A. Anderson, J. Alloys Compd. 404–406, 637 (2005)

    Article  Google Scholar 

  12. A. Zecchina, S. Bordiga, J.G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bjorgen, K.P. Lillerud, J. Am. Chem. Soc. 127, 6361 (2005)

    Article  CAS  Google Scholar 

  13. S.B. Kayiran, F.L. Darkrim, Surf. Interf. Anal. 34, 100 (2002)

    Article  CAS  Google Scholar 

  14. X. Du, E. Wu, Chin. J. Chem. Phys. 19, 457 (2006)

    Article  CAS  Google Scholar 

  15. J.G. Vitillo, G. Ricchiardi, G. Spoto, A. Zechina, Phys. Chem. Chem. Phys. 7, 3948 (2005)

    Article  CAS  Google Scholar 

  16. J. Weitkamp, M. Fritz, S. Ernst, Int. J. Hydrogen Energy 20, 967 (1995)

    Article  CAS  Google Scholar 

  17. G.T. Palomino, M.R.L. Carayol, C.O. Arean, J. Mater. Chem. 16, 2884 (2006)

    Article  Google Scholar 

  18. L. Regli, A. Zechina, J.G. Vitillo, D. Cocina, G. Spoto, C. Lamberti, P. Lillerud, U. Olsbye, S. Bordiga, Phys. Chem. Chem. Phys. 7, 3197 (2005)

    Article  CAS  Google Scholar 

  19. V.B. Kazansky, V.Y. Borovkov, A. Serikh, H.G. Karge, Micropor. Mesopor. Mater. 22, 251 (1998)

    Article  CAS  Google Scholar 

  20. H.W. Langmi, A. Walton, M.M. Al-Mamouri, S.R. Johnson, D. Book, J.D. Speight, P.P. Edwards, I. Gameson, P.A. Anderson, I.R. Harris, J. Alloys Compd. 356–357, 710 (2003)

    Article  Google Scholar 

  21. N. Nishimiya, T. Kishi, T. Mizushima, A. Matsumoto, K. Tsutsumi, J. Alloys Compd. 319, 312 (2001)

    Article  CAS  Google Scholar 

  22. D.M. Razmus, C.K. Hall, AIChE J. 37, 769 (1991)

    Article  CAS  Google Scholar 

  23. K. Watanabe, N. Austin, M.R. Stapleton, Mol. Simul. 15, 197 (1995)

    Article  CAS  Google Scholar 

  24. M.K. Song, K.T. No, Catal. Today 120, 374 (2007)

    Article  CAS  Google Scholar 

  25. A.W.C. van den Berg, S.T. Bromley, J.C. Wojdel, J.C. Jansen, Micropor. Mesopor. Mater. 87, 235 (2006)

    Article  Google Scholar 

  26. A.H. Fuchs, A.K. Cheetham, J. Phys. Chem. B 105, 7375 (2001)

    Article  CAS  Google Scholar 

  27. A. Zuttel, P. Sudan, P. Mauron, P. Wenger, Appl. Phys. A 78, 941 (2004)

    Article  Google Scholar 

  28. Cerius2 v. 4.2, Accelrys, Inc., San Diego, 1999

  29. C.P. Grey, F.I. Poshni, A.F. Gualtieri, P. Norby, J.C. Hanson, D.R. Corbin, J. Am. Chem. Soc. 119, 1981 (1997)

    Article  CAS  Google Scholar 

  30. D.W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974)

    Google Scholar 

  31. C.W. Kim, K.J. Jung, N.H. Heo, S.H. Kim, S.B. Hong, K. Seff. J. Phys. Chem. C 113, 5164 (2009)

    Article  CAS  Google Scholar 

  32. E. Pantatosaki, G.K. Papadopoulos, H. Jobic, D.N. Theodorou, J. Phys. Chem. B 112, 11708 (2008)

    Article  CAS  Google Scholar 

  33. G.K. Papadopoulos, D.N. Theodorou, Mol. Simul. 35, 79 (2009)

    Article  CAS  Google Scholar 

  34. Cerius2 User Guide: Forcefield-Based Simulations (Molecular Simulations Inc., San Diego, 1997)

  35. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, UK, 1987)

    Google Scholar 

  36. Y.P. Joshi, D.J. Tildesley, Surf. Sci. 166, 169 (1986)

    Article  CAS  Google Scholar 

  37. B. Weinberger, F.L. Darkrim, S.B. Kayiran, A. Gicquel, D. Levesque, AIChE J. 51, 142 (2005)

    Article  CAS  Google Scholar 

  38. S. Murad, K.E. Gubbins, P. Lykos (eds.), ACS Symposium Series (American Chemical Society, Washington, 1978)

    Google Scholar 

  39. G. Maurin, P. Llewellyn, T. Poyet, B. Kuchta, J. Phys. Chem. B 109, 125 (2005)

    Article  CAS  Google Scholar 

  40. G.J. Kramer, N.P. Farragher, B.W.H. van Beest, R.A. van Santen, Phys. Rev. B 43, 5068 (1991)

    Article  CAS  Google Scholar 

  41. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, U. FF, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  CAS  Google Scholar 

  42. D. Bae, K. Seff, Micropor. Mesopor. Mater. 40, 219 (2000)

    Article  CAS  Google Scholar 

  43. G. Ricchiardi, J.G. Vitillo, D. Cocina, E.N. Gribov, A. Zechina, Phys. Chem. Chem. Phys. 9, 2753 (2007)

    Article  CAS  Google Scholar 

  44. I. López-Corral, E. Germán, A. Juan, M.A. Volpe, G.P. Brizuela, J. Phys. Chem. C 115, 4315 (2011)

    Article  Google Scholar 

  45. C. Zhou, J. Wu, A. Nie, R.C. Forrey, A. Tachibana, H. Cheng, J. Phys. Chem. C 111, 12773 (2007)

    Article  CAS  Google Scholar 

  46. A.I. Serykh, Micropor. Mesopor. Mater. 80, 321 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Council of Scientific and Industrial Research (CSIR) for funding under Network Project: NWP 0022 and to Analytical Science Discipline, CSMCRI for analytical support. MCR is thankful to Mr. Govind Sethia and Mr. K Munusamy for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. Bajaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raj, M.C., Prasanth, K.P., Dangi, G.P. et al. Hydrogen sorption in transition metal exchanged zeolite Y: volumetric measurements and simulation study. J Porous Mater 19, 657–666 (2012). https://doi.org/10.1007/s10934-011-9517-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9517-2

Keywords

Navigation