Skip to main content

Advertisement

Log in

In situ synthesis of monolithic molecularly imprinted stationary phases for liquid chromatographic enantioseparation of dibenzoyl tartaric acid enantiomers

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A monolithic molecularly imprinted polymer (monolithic MIP) for dibenzoyl-D-tartaric acid (D-DBTA) was prepared in a stainless-steel chromatographic column tube (50 mm × 4.6 mm I.D.) as HPLC stationary phase through in situ polymerization. By optimizing polymeric and chromatographic conditions, the chiral separation of DBTA enantiomers was successfully achieved in the obtained MIP in less than 25 min with a resolution Rs = 1.25, whereas no enantioseparation effect was found on the monolithic non-imprinted polymer (NIP). Thermodynamic data of the enantioseparation were calculated. The results revealed that two different thermodynamic processes existed within the temperature range investigated, moreover, just at the transition temperature (50 °C) of the two processes, separation factor α reached its maximum. Scathcard analysis indicated that only one class of binding sites existed in the obtained MIP, with its K d and Q max estimated to be 5.457 × 10−4 mol L−1 and 229.6 μmol g−1, respectively. Nitrogen adsorption experiment proved that the prepared MIP had a large specific surface area of 105 m2 g−1. Scanning electron microscopy showed that large flow-through pores were present in the prepared monolith. As a consequence, the column backpressure was only 1.2 MPa with acetonitrile as mobile phase at a flow rate of 1.0 mL min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Wulff, A. Sarhan, Angew. Chem. Int. Ed. Engl. 11, 341 (1972)

    CAS  Google Scholar 

  2. R. Arshady, K. Mosbach, Macromol. Chem. Phys. 182, 687 (1981)

    Article  CAS  Google Scholar 

  3. G. Cirillo, M. Curcio, O.I. Parisi, F. Puoci, F. Iemma, U.G. Spizzirri, D. Restuccia, N. Picci, Anal Methods 125, 1058 (2011)

    CAS  Google Scholar 

  4. X.L. Sun, X.W. He, L.X. Chen, Y.K. Zhang et al., Talanta 79, 926 (2009)

    Article  CAS  Google Scholar 

  5. A. Conesa, C. Palet, Desalination 200, 110 (2006)

    Article  CAS  Google Scholar 

  6. B.B. Prasad, R. Madhuri, M.P. Tiwari, P.S. Sharma, Electrochim. Acta. 55, 9146 (2010)

    Article  CAS  Google Scholar 

  7. D.L. Rathbone, Adv. Drug. Deliv. Rev. 57, 1854 (2005)

    Article  CAS  Google Scholar 

  8. O. Brüggemann, Anal. Chim. Acta 435, 197 (2001)

    Article  Google Scholar 

  9. G. Guiochon, J. Chromatogr. A 1168, 101 (2007)

    Article  CAS  Google Scholar 

  10. T. Ikegamil, N. Tanaka, Curr. Opin. Chem. Biol. 8, 527 (2004)

    Article  Google Scholar 

  11. K. Cabrera, D. Lubda, H.M. Eggenweiler, J. High. Res. Chromosome 23, 93 (2001)

    Article  Google Scholar 

  12. M. Kato, K. Sakai-Kato, N. Matsumoto, T. Toyo’oka, Anal. Chem. 74, 1915 (2002)

    Article  CAS  Google Scholar 

  13. J. Matsui, T. Kato, T. Takeuchi, M. Suzuki, K. Yokoyama, E. Tamiya, I. Karube, Anal. Chem. 65, 2223 (1993)

    Article  CAS  Google Scholar 

  14. B. Tan, G.S. Luo, X. Qi, J.D. Wang, Sep. Sci. Technol. 49, 186 (2006)

    CAS  Google Scholar 

  15. B. Tan, G.S. Luo, J.D. Wang, Tetrahedron Asymmetry 17, 883 (2006)

    Article  CAS  Google Scholar 

  16. Z.G. Yang, Z.L. XU, J. Funct. Polym. 18, 36 (2005)

    CAS  Google Scholar 

  17. Y. Lu, C.X. Li, H.S. Zhang, X.H. Liu, Anal. Chim. Acta 489, 33 (2003)

    Article  CAS  Google Scholar 

  18. D. Batra, K.J. Shea, Curr. Opin. Chem. Biol. 7, 434 (2003)

    Article  CAS  Google Scholar 

  19. H.S. Andersson, J.G. Karlsson, S.A. Piletsky, A.-C. Koch-Schmidt, K. Mosbach, I.A. Nicolls, J. Chromatogr. A 848, 39 (1999)

    Article  CAS  Google Scholar 

  20. M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, Molecular Imprinting: From Fundamentals to Applications, 3rd edn. (WILEY-VCH Verlag GmbH & Co. KGaA, Germany, 2003), pp 24

  21. M. Li, X.C. Lin, Z.H. Xie, J. Chromatogr. A 1216, 5320 (2009)

    Article  CAS  Google Scholar 

  22. Y. Lu, C.X. Li, X.D. Wang, P.C. Sun, X.H. Xing, J. Chromatogr. B 804, 53 (2004)

    Article  CAS  Google Scholar 

  23. M. Yan, O. Ramstrom, Molecularly Imprinted Materials: Science and Technology, 1st edn. (Madison Dekker, New York, 2005), p. 9

    Google Scholar 

  24. T.Y. Guo, L.Y. Zhang, G.J. Hao, M.D. Song, B.H. Zhang, Chin. J. Anal. Chem. 32, 705 (2004)

    CAS  Google Scholar 

  25. X.D. Huang, F. Qin, X.M. Chen, Y.Q. Liu, H.F. Zou, J. Chromatogr. B 804, 13 (2004)

    Article  CAS  Google Scholar 

  26. F. Jiao, X. Chen, Y. Hu, Z. Wang, J. Iran. Chem.Soc. 5, 553 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the supports given to this work by the China National Natural Science Foundation (Project No. 20805058) and Hunan Provincial Postdoctoral Special Foundation of China (Project No. 2009RS3039) and Hunan Provincial Natural Science Foundation of China (Project No. 09JJ3026) and Undergraduate Innovational Experimentation Program of Central South University (LB10055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feipeng Jiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Yang, W., Zhou, Y. et al. In situ synthesis of monolithic molecularly imprinted stationary phases for liquid chromatographic enantioseparation of dibenzoyl tartaric acid enantiomers. J Porous Mater 19, 587–595 (2012). https://doi.org/10.1007/s10934-011-9509-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9509-2

Keywords

Navigation