Journal of Porous Materials

, Volume 19, Issue 5, pp 537–542 | Cite as

Preparation of enhanced three-dimensional porous chitosan scaffolds by acetylation and aqueous extraction

  • Jin Ik Lim
  • Hun-Kuk ParkEmail author


We have devised a method to prepare a 3-dimensional (3D) porous acetylated chitosan scaffold for use as a cell adhesion matrix in tissue engineering applications. The scaffold was prepared by molding a mixture of chitosan and gelatin (as porogen), then removing the uncomplexed porogen by aqueous extraction from the freeze-dried material prior to acetylation. The extent of chitosan acetylation according to the reaction time was observed by X-ray diffraction (XRD) analysis. The differences between the aqueous-extracted and control phase-separated chitosan scaffolds in terms of pore morphology and interconnectivity were examined by scanning electron microscopy (SEM), enzymatic degradation, and surface roughness tests. The fibroblast cell line NIH-3T3 was used to test relative cell affinities for the acetylated versus untreated (control) chitosan scaffolds. The acetylated 3D porous scaffolds showed high interconnectivity and improved biocompatibility properties. Thus, these scaffolds may be very useful for a variety of tissue engineering applications.


Chitosan scaffold Porous structure Aqueous extraction Acetylation Tissue regeneration 



This study was supported by a grant of the Korea Health technology R&D Project, Ministry of Health & Welfare, Republic of Korea. (A110216).


  1. 1.
    D.W. Hutmacher, Biomaterials 21(24), 2529 (2000)CrossRefGoogle Scholar
  2. 2.
    S.V. Madihally, H.W.T. Matthew, Biomaterials 20(12), 1133 (1999)CrossRefGoogle Scholar
  3. 3.
    C. Liu, Z. Xia, J.T. Czernuszka, Chem. Eng. Res. 85(7), 1051 (2007)CrossRefGoogle Scholar
  4. 4.
    Y. Yang, X. Gu, R. Tan, W. Hu, X. Wang, P. Zhang, T. Zhang, Biotechnol. Lett. 26(23), 1793 (2004)CrossRefGoogle Scholar
  5. 5.
    H. Cao, N. Kuboyama, Bone 46(2), 386 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Kellomäki, H. Niiranen, K. Puumanen, N. Ashammakhi, T. Waris, P. Törmälä, Biomaterials 21(24), 2495 (2000)CrossRefGoogle Scholar
  7. 7.
    L.Y. Lee, S.C. Wu, S.S. Fu, S.Y. Zeng, W.S. Leong, L.P. Tan, Eur. Polym. J. 45(11), 3249 (2009)CrossRefGoogle Scholar
  8. 8.
    X.P. Ma, Adv. Drug Deliv. Rev. 60(2), 184 (2008)CrossRefGoogle Scholar
  9. 9.
    L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32(8–9), 762 (2007)CrossRefGoogle Scholar
  10. 10.
    S. Cohen, M.C. Baño, L.G. Cima, H.R. Allcock, J.P. Vacanti, C.A. Vacanti, R. Langer, Clin. Mater. 13(1–4), 3 (1993)CrossRefGoogle Scholar
  11. 11.
    F. Chen, Y. Su, X. Mo, C. He, H. Wang, Y. Ikada, J. Biomater. Sci. Polym. Ed. 20(14), 2117 (2009)CrossRefGoogle Scholar
  12. 12.
    S.E. Fischer, X. Liu, H.O. Mao, J.L. Harden, Biomaterials 28(22), 3325 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Shen, X. Hu, J. Bei, S. Wang, Biomaterials 29(15), 2388 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Schakenraad, P.J. Dijkstra, Clin. Mater. 7(3), 253 (1991)CrossRefGoogle Scholar
  15. 15.
    H. Wang, J. Ji, W. Zhang, Y. Zhang, J. Jiang, Z. Wu, S. Pu, P.K. Chu, Acta Biomater. 5(1), 279 (2009)CrossRefGoogle Scholar
  16. 16.
    K. Nagpal, S.K. Singh, D.N. Mishra, Pharm. Bull. 58(11), 423 (2010)Google Scholar
  17. 17.
    W.W. Thein-Han, R.D.K. Misra, Acta Biomater. 5(4), 1182 (2009)CrossRefGoogle Scholar
  18. 18.
    E. Khor, L.Y. Lim, Biomaterials 24(13), 2339 (2003)CrossRefGoogle Scholar
  19. 19.
    J.A. Ko, B.K. Kim, H.J. Park, J. Appl. Polym. Sci. 117(3), 1618 (2010)Google Scholar
  20. 20.
    H. Nagahama, T. Kashiki, N. Nwe, R. Jayakumar, T. Furuike, H. Tamura, Carbohydr. Polym. 73(3), 456 (2008)CrossRefGoogle Scholar
  21. 21.
    H. Tamura, T. Furuike, S.V. Nair, R. Jayakumar, Carbohydr. Polym. 84(2), 820 (2011)CrossRefGoogle Scholar
  22. 22.
    P.T. Sudheesh, K.S. Abhilash, K. Manzoor, S.V. Nair, H. Tamura, R. Jayakumar, Carbohydr. Polym. 80(3), 761 (2010)CrossRefGoogle Scholar
  23. 23.
    C.K.S. Pillai, W. Paul, C.P. Sharma, Prog. Polym. Sci. 34(7), 641 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Jayakumar, M. Prabaharan, P.T. Sudheesh, S.V. Kumar, S.V. Nair, H. Tamura, Biotechnol. Adv. 29(3), 322 (2011)CrossRefGoogle Scholar
  25. 25.
    Y.W. Cho, Y.N. Cho, S.H. Chung, G. Yoo, S.W. Ko, Biomaterials 20(22), 2139 (1999)CrossRefGoogle Scholar
  26. 26.
    P. Gerentes, L. Vachoud, J. Doury, A. Domand, Biomaterials 23(5), 1295 (2002)CrossRefGoogle Scholar
  27. 27.
    S.B. Lee, Y.H. Kim, M.S. Chong, Y.M. Lee, Biomaterials 25(12), 2309 (2004)CrossRefGoogle Scholar
  28. 28.
    G. Li, Y. Du, Y. Tao, H. Deng, X. Luo, J. Yang, Carbohydr. Polym. 82(3), 706 (2010)CrossRefGoogle Scholar
  29. 29.
    S. Tanodekaew, M. Prasitsilp, S. Swasdison, B. Thavornyutikarn, T. Pothsree, R. Pateepasen, Biomaterials 25(7–8), 1453 (2004)CrossRefGoogle Scholar
  30. 30.
    T. Masuda, Y. Ueno, N. Kitabatake, J. Agric. Food Chem. 49(10), 4937 (2001)CrossRefGoogle Scholar
  31. 31.
    B. Porstmann, K. Jung, H. Schmechta, U. Evers, M. Pergande, T. Porstmann, Clin. Biochem. 22(5), 349 (1989)CrossRefGoogle Scholar
  32. 32.
    I. Aranaz, M. Mengíbar, R. Harris, I. Paños, B. Miralles, N. Acosta, G. Galed, Á. Heras, Curr. Chem. Biol. 3, 203 (2009)CrossRefGoogle Scholar
  33. 33.
    R.A. Alberty, J. Theor. Biol. 254(1), 156 (2008)CrossRefGoogle Scholar
  34. 34.
    A.G. Ogston, Biochim. Biophys. Acta 707(2), 289 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical Engineering and Healthcare Industry Research Institute, College of MedicineKyung Hee UniversitySeoulRepublic of Korea

Personalised recommendations