Skip to main content

Advertisement

Log in

Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A technique combining gel-casting and freeze drying methods is introduced to prepare porous hydroxyapatite scaffolds which allow for better control of the scaffold microstructure and have improved mechanical properties. A monomeric system which is known to be a suitable gelling agent for setting ceramic suspensions into dense forms was selected to produce ceramic foams. Different concentrations of sodium lauryl sulphate solution were added into the hydroxyapatite gel suspension as a pore former. The effect of the solid content on the mechanical properties of the scaffold was also investigated. Rapid freezing with liquid nitrogen was performed according to the freeze drying technique and the porous structure and morphology of the scaffolds were analyzed by scanning electron microscopy. The mechanical properties of the hydroxyapatite scaffolds were determined by testing compressive strength using a universal testing machine. The prepared scaffolds were characterized by well-defined pore connectivity along with directional, uniform and completely open porosity. The maximum compressive strength of about 17 MPa obtained from the suspension consisted of 50% solid content with 20% concentration of sodium lauryl sulphate solution. The results show that sodium lauryl sulphate solution plays a significant role in changing the pore structure of hydroxyapaite scaffolds in systems having high solid content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991)

    Article  CAS  Google Scholar 

  2. R.Z. Legeros, J.P. Legeros, in An Introduction to Bioceramics, ed. by L.L. Hench, J. Willson (World Scientific, London, 1993), p. 139

    Google Scholar 

  3. B.M. Tracy, R.H. Doremus, J. Biomed. Mater. Res. 18, 719 (1984)

    Article  CAS  Google Scholar 

  4. S.W.K. Kweh, K.A. Khor, P. Cheang, J. Mater. Process. Technol. 89–90, 373 (1999)

    Article  Google Scholar 

  5. J. Tian, J. Tian, J. Mater. Sci. 36, 3061 (2001)

    Article  CAS  Google Scholar 

  6. H.R. Ramay, M. Zhang, Biomaterials 24, 3293 (2003)

    Article  CAS  Google Scholar 

  7. E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn, A.P. Tomsia, Mater. Sci. Eng. 27, 546 (2007)

    Article  CAS  Google Scholar 

  8. H.G. Zhang, Q. Zhu, J. Mater. Sci. Mater. Med. 18, 1825 (2007)

    Article  CAS  Google Scholar 

  9. S. Itoh, S. Nakamura, M. Nakamura, K. Shinomiya, K. Yanashita, Biomaterials 27, 5572 (2006)

    Article  CAS  Google Scholar 

  10. I. Sopyan, M. Mel, S. Ramesh, Sci. Technol. Adv. Mater. 8, 116 (2007)

    Article  CAS  Google Scholar 

  11. P. Sepulveda, J.G.P. Binner, S.O. Rogero, O.Z. Higa, J.C. Bressiani, J. Biomed. Mater. Res. 50, 27 (2000)

    Article  CAS  Google Scholar 

  12. T.M.G. Chu, J.W. Halloran, S.J. Hollister, S.E. Feinberg, J. Mater. Sci. 12, 471 (2001)

    Article  CAS  Google Scholar 

  13. Q. Fu, M.N. Rahaman, F. Dogan, S. Bal, J. Biomed. Mater. Res. B Appl. Biomater 86, 125 (2008)

    Google Scholar 

  14. H.W. Wang, Y. Tabata, Y. Ikada, Biomaterials 20, 1339 (1999)

    Article  Google Scholar 

  15. H. Schoof, L. Bruns, A. Fischer, I. Heschel, G. Rau, J. Cryst. Growth 209, 122 (2000)

    Article  CAS  Google Scholar 

  16. H. Schoof, J. Apel, I. Heschel, G. Rau, J Biomed. Mater. Res. Appl. Biomater. 58, 352 (2001)

    Article  CAS  Google Scholar 

  17. J.W. Halloran, Science 311, 1108 (2006)

    Google Scholar 

  18. S. Yunoki, T. Ikoma, A. Tsuchiya, A. Monkawa, K. Ohta, S. Sotome, K. Shinomiya, J. Tanaka, J. Biomed. Mater. Res. Appl. Biomater. B. 80, 166 (2007)

    Article  Google Scholar 

  19. J.H. Song, Y.H. Koh, H.E. Kim, J. Am. Ceram. Soc. 89, 2649 (2006)

    Article  CAS  Google Scholar 

  20. S. Deville, E. Saiz, A. Tomsia, Biomaterials 27, 5480 (2006)

    Article  CAS  Google Scholar 

  21. T. Fukasawa, M. Ando, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 84, 230 (2001)

    Article  CAS  Google Scholar 

  22. K. Araki, J.W. Halloran, J. Am. Ceram. Soc. 88, 1108 (2005)

    Article  CAS  Google Scholar 

  23. S. Deville, E. Saiz, R.K. Nalla, A. Tomsia, Science 311, 515 (2006)

    Article  CAS  Google Scholar 

  24. L.M. Rodriguez-Lorenzo, M. Vallet-Regi, J.M.F. Ferreira, Biomaterials 22, 1847 (2001)

    Article  CAS  Google Scholar 

  25. F.S. Ortega, P. Sepulveda, V.C. Pandolfelli, J. Eur. Ceram. Soc. 22, 1395 (2002)

    Article  CAS  Google Scholar 

  26. P. Sepulveda, Am. Ceram. Soc. Bull. 76, 61 (1997)

    CAS  Google Scholar 

  27. P. Sepulveda, J.G.P. Binner, J. Eur. Ceram. Soc. 19, 2059 (1999)

    Article  CAS  Google Scholar 

  28. Y.H. An, in Mechanical Testing of Bone and the Bone-Implant Interface, ed. by Y.H. An, R.A. Draughn (CRC Press, Florida, 2000), p. 41

    Google Scholar 

  29. J.D. Currey, in Handbook of Composites, ed. by A. Kelly, S.T. Meleiko (Elsevier, Holland, 1983), p. 501

  30. Y.C. Fung, Biomechanics. Mechanical Properties of Living Tissue, 2nd edn (Springer, New York, 1993), p. 500

    Google Scholar 

  31. L.B. Kong, J. Ma, F. Boey, J. Mater. Sci. 37, 1131 (2002)

    Article  CAS  Google Scholar 

  32. L. Cao, C. Zhang, J. Huang, Ceram. Int. 31, 1041 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed with the support of the National Metal and Materials Technology Center, the Ministry of Science and Technology of Thailand, Project No.MT-B-52-BMD-07-171-I. The authors gratefully thank Mr. Panupong Samingkaew and Mr. Parut Petprim for their lab assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruporn Monmaturapoj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monmaturapoj, N., Soodsawang, W. & Thepsuwan, W. Porous hydroxyapatite scaffolds produced by the combination of the gel-casting and freeze drying techniques. J Porous Mater 19, 441–447 (2012). https://doi.org/10.1007/s10934-011-9492-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9492-7

Keywords

Navigation