Skip to main content
Log in

Production and aging of highly porous 17-4 PH stainless steel

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This study describes production of highly porous 17-4 PH stainless steel for biomedical implant applications by space holder-sintering technique. 17-4 PH stainless steel powders were mixed with space holder and then compacted. For designing pore properties, both spherical and irregular shaped carbamide with different particle size ranges were used as space holder and removed by water leaching. Porous 17-4 PH steel specimens were sintered at 1,260 °C for 40 min. Boron was used as a liquid phase sintering additive. In addition, sintered specimens were aged in order to increase mechanical properties. Specimens were austenitized at 1,050 °C and then quenched. Quenched specimens were aged at times of 1–6 h at temperatures between 450 and 570 °C. The pore size and shape of the 17-4 PH stainless steel foams replicated the initial size and shape of the carbamide particles. This suggests that pore properties can be designed by using proper size, shape and content of space holder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide (Elsevier, Boston, 2000)

    Google Scholar 

  2. M. Bram, C. Stiller, H.P. Buckramed, D. Stöver, H. Bauer, High-porosity titanium, stainless steel and superalloy parts. Adv. Eng. Mater. 2, 196–199 (2000)

    Article  CAS  Google Scholar 

  3. J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559–632 (2001)

    Article  CAS  Google Scholar 

  4. L.J. Gibson, M.F. Ashby, Cellular Solids–Structures and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  5. N. Wenjuan, B. Chenguang, Q. GuiBao, W. Qiang, Processing and properties of porous titanium using space holder technique. Mat. Sci. Eng. A 506, 148–151 (2009)

    Article  Google Scholar 

  6. H.I. Bakan, A novel water leaching and sintering process for manufacturing highly porous stainless steel. Scripta Mater. 55, 203–206 (2006)

    Article  CAS  Google Scholar 

  7. C.E. Wen, C.E. Mabuchi, M. Yamada, Y. Shimojima, K. Chino, Y. Asahina, Processing of biocompatible porous Ti and Mg. Scripta Mater. 45, 1147–1153 (2001)

    Article  CAS  Google Scholar 

  8. H.O. Gulsoy, R.M. German, Sintered foams from precipitation hardened stainless steel powder. Powder Metall. 51(4) (2008)

  9. Y.Y. Zhao, D.X. Sun, A novel sintering-dissolution process for manufacturing Al foams. Scripta Mater. 44, 105–110 (2001)

    Article  CAS  Google Scholar 

  10. H.P. Degisher, B. Kriszt, Handbook of Cellular Metals (Wiley, Weinheim, 2002), pp. 313–315

    Book  Google Scholar 

  11. Z. Esen, S. Bor, Processing of titanium foams using magnesium spacer particles. Scripta Mater. 56, 341–344 (2007)

    Article  CAS  Google Scholar 

  12. N. Michailidis, F. Stergioudi, A. Tsoukniadas, E. Pavlidou, Compressive response of Al-foams produced via a powder sintering process based on a leachable space-holder material. Mat. Sci. Eng. A 528, 1662–1867 (2011)

    Article  Google Scholar 

  13. C.T. Schade, P.D. Stears, A. Lawley, R.D. Doherty, Precipitation hardening PM stainless steels. Int. J. Powder Metall. 43(4) (2007)

  14. H. Mirzadeh, A. Najafizadeh, Aging kinetics of 17–4 PH stainless steel. Mater. Chem. Phys. 116, 119–124 (2009)

    Article  CAS  Google Scholar 

  15. M. Murayama, Y. Katayama, K. Hono, A microstructural evolution in a 17-4 PH stainless steel after aging at 400 °C. Metall. Mater. Trans. 30, 345–353 (1999)

    Article  Google Scholar 

  16. J. Wang, H. Zou, L. Cong, Y. Peng, S. Qiu, B. Shen, The microstructure evolution of type 17–4 PH stainless steel during long-term aging at 350 °C. Nucl. Eng. Des. 236, 2531–2536 (2006)

    Article  CAS  Google Scholar 

  17. H.P. Ren, H.Y. Wang, Z.C. Liu, Cu precipitation dynamics in Fe-Cu alloy. J. Phys.: Conf. Ser. 96, 0-12206 (2008)

    Google Scholar 

  18. B. Rivolta, R. Gerosa, On the non-isothermal precipitation of copper-rich phase in 17–4 PH stainless steel using dilatometric techniques. J. Therm. Anal. Calorim. 102, 857–862 (2010)

    Article  CAS  Google Scholar 

  19. L.J. Gibson, Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005)

    Article  Google Scholar 

  20. V.K. Balla, S. Bodgak, S. Bose, A. Bandyopadhyay, Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater. 6, 3349–3359 (2010)

    Article  CAS  Google Scholar 

  21. H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mat. Sci. Eng. C 26, 1269–1277 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research Projects Coordination Unit of Istanbul University, Project number T-1430. It was partially based on a Ph.D. thesis pursued by Ilven Mutlu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilven Mutlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutlu, I., Oktay, E. Production and aging of highly porous 17-4 PH stainless steel. J Porous Mater 19, 433–440 (2012). https://doi.org/10.1007/s10934-011-9491-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-011-9491-8

Keywords

Navigation