Skip to main content
Log in

Sorption of nitrogen, oxygen, and argon in Cd (II) exchanged zeolite X: volumetric equilibrium adsorption and grand canonical Monte Carlo study

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The adsorption of nitrogen, oxygen and argon has been studied in cadmium (II) cations exchanged zeolite X at 288.2 and 303.2 K. Experimentally measured adsorption isotherms are compared with theoretically calculated data using grand canonical Monte Carlo (GCMC) simulation. Nitrogen showed higher adsorption capacity and selectivity than oxygen and argon in these zeolite samples. The cadmium exchanged zeolite X was showed that increased adsorption capacity for nitrogen, oxygen, and argon with increase in Cd (II)-exchange levels, indicating as charge density increases adsorption capacity also increase. Isosteric heat of adsorption data showed stronger interactions of nitrogen molecules with cadmium cations in zeolite samples. These observations have been explained in terms of higher electrostatic interaction of nitrogen with extra framework zeolite cations. The selectivity of oxygen over argon is explained in terms of its higher interaction with Cd (II)-exchanged zeolites than argon molecules. The selectivity of N2/O2 of cadmium-exchanged zeolite X is better than only sodium containing zeolite-X. Heats of adsorption and adsorption isotherms were also calculated using GCMC simulation algorithm. Simulation studies expectedly show the proximity of nitrogen molecules to the locations of extra framework sodium and cadmium cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.T. Yang, Adsorbents: Fundamentals and Applications (Wiley-Interscience, New York, 2003)

    Book  Google Scholar 

  2. W. Breck, Zeolites Molecular Sieves: Structure, Chemistry and Use (Wiley-Interscience, New York, 1974)

    Google Scholar 

  3. R.V. Jasra, N.V. Choudary, S.G.T. Bhat, Sep. Sci. Technol. 26, 885–930 (1991)

    Article  CAS  Google Scholar 

  4. R.T. Yang, Gas Separation by Adsorption Processes (Imperial College Press, London, 1997)

    Google Scholar 

  5. D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption (Wiley-VCH, New York, 1994)

    Google Scholar 

  6. R.V. Jasra, N.V. Choudary, S.G.T. Bhat, Ind. Eng. Chem. Res. 35, 4221–4229 (1996)

    Article  CAS  Google Scholar 

  7. C.C. Chao, U.S. Patent 4859217 (1989)

  8. C.C. Chao, J.D. Sherman, J.T. Mullhaupt, C.M. Bolinger, U.S. Patent 5174979 (1992)

  9. C.G. Coe, J.F. Kirner, R. Pierantozzi, T.R. White, U.S. Patent 5152813 (1992)

  10. S.U. Rege, R.T. Yang, Ind. Eng. Chem. Res. 36, 5358–5365 (1997)

    Article  CAS  Google Scholar 

  11. K.P. Prasanth, R.S. Pillai, H.C. Bajaj, R.V. Jasra, H.D. Chung, T.H. Kim, S.D. Song, Int. J. Hydrogen Energy 33, 735 (2008)

    Article  CAS  Google Scholar 

  12. J. Sebastian, R.V. Jasra, Chem. Commun. 26, 8–269 (2003)

    Google Scholar 

  13. J. Sebastian, R.V. Jasra, U.S. Patent 6572838, PCT Patent WO 03/080236 A1, UK Patent 2,386,889 A (2003)

  14. N. Chen, R.T. Yang, Ind. Eng. Chem. Res. 35, 4020–4027 (1996)

    Article  CAS  Google Scholar 

  15. N.D. Hutson, D.A. Reisner, R.T. Yang, B.H. Toby, Chem. Mater. 12, 3020–3031 (2000)

    Article  CAS  Google Scholar 

  16. J. Sebastian, S.A. Peter, R.V. Jasra, Langmuir 21, 11220–11225 (2005)

    Article  CAS  Google Scholar 

  17. J. Sebastian, R.S. Pillai, S.A. Peter, R.V. Jasra, Ind. Eng. Chem. Res. 46, 6293–6302 (2007)

    Article  CAS  Google Scholar 

  18. R.V. Jasra, C.D. Chudasama, U.S. Patent 0090380 A1 (2005)

  19. A. Jayaraman, R.T. Yang, S.G.T. Bhat, N.V. Choudary, Adsorption 8, 271–278 (2002)

    Article  CAS  Google Scholar 

  20. A.H. Fuchs, A.K. Cheetham, J. Phys. Chem. B 105, 7375 (2001)

    Article  CAS  Google Scholar 

  21. D.M. Razmus, C.K. Hall, AIChE J. 37, 769–779 (1991)

    Article  CAS  Google Scholar 

  22. K. Watanabe, N. Austin, M.R. Stapleton, Mol. Simul. 15, 197–221 (1995)

    Article  CAS  Google Scholar 

  23. N.D. Hutson, S.C. Zajic, R.T. Yang, Ind. Eng. Chem. Res. 39, 1775–1780 (2000)

    Article  CAS  Google Scholar 

  24. A.J. Richards, K. Watanabe, N. Austin, M.R. Stapleton, J. Porous Mat. 2, 43–49 (1995)

    Article  CAS  Google Scholar 

  25. R.S. Pillai, S.A. Peter, R.V. Jasra, Langmuir 23, 8899–8908 (2007)

    Article  CAS  Google Scholar 

  26. K.S.W. Sing, in Characterization of Powder Surfaces, ed. by G.D. Parfitt, K.S.W. Sing (Academic Press, London, 1976)

    Google Scholar 

  27. L. Zhu, K. Seff, J. Phys. Chem. B 103, 9512–9518 (1999)

    Article  CAS  Google Scholar 

  28. J.H. Kwon, S.B. Jang, Y. Kim, K. Seff, J. Phys. Chem. 100, 13720–13724 (1996)

    Article  CAS  Google Scholar 

  29. E. de Burchart, Studies on Zeolites: Molecular Mechanics, Framework Stability and Crystal Growth, Ph.D. Thesis Table I, Chapter XII (1992)

  30. Cerius2 User Guide, Forcefield-Based Simulations (Molecular Simulations Inc., San Diego, 1997)

  31. S. Murad, K.E. Gubbins, in Computer Modeling of Matter, ed. by P. Lykos. ACS Symposium Series 86 (American Chemical Society, Washington DC, 1978), p. 62

  32. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987)

    Google Scholar 

  33. G.J. Kramer, N.P. Farragher, B.W.H. van Beeset, R.A. van Santen, Phys. Rev. B 43, 5068 (1991)

    Article  CAS  Google Scholar 

  34. G. Maurin, P. Llewellyn, T. Poyet, B. Kuchta, J. Phys. Chem. B 109, 125 (2005)

    Article  CAS  Google Scholar 

  35. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  CAS  Google Scholar 

  36. I.A.M. Ahmed, S.D. Young, J.F.W. Mosselmans, N.M.J. Crout, E.H. Bailey, Geochim. Cosmochim. Acta 73, 1577–1587 (2009)

    Article  CAS  Google Scholar 

  37. D.R. Lide, CRC Hand Book of Chemistry and Physics, 90th edn. (The Chemical Rubber Co., Cleveland, 2009)

Download references

Acknowledgments

We greatly admire the financial assistance and support from Council of Scientific and Industrial Research (CSIR), New Delhi. R. S. P. thanks to CSIR, New Delhi, India for financial assistance in the form of senior research fellowship. We also thank to Dr. Alexandra Simperler and Dr. James Wescott, Accerlys Inc. E. U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raksh V. Jasra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillai, R.S., Sebastian, J. & Jasra, R.V. Sorption of nitrogen, oxygen, and argon in Cd (II) exchanged zeolite X: volumetric equilibrium adsorption and grand canonical Monte Carlo study. J Porous Mater 18, 113–124 (2011). https://doi.org/10.1007/s10934-010-9362-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9362-8

Keywords

Navigation