Journal of Porous Materials

, Volume 17, Issue 6, pp 727–736 | Cite as

Structural aspects of AlPO4-5 zeotypes synthesized by microwave-hydrothermal process. 1. Effect of heating time and microwave power

Article

Abstract

AlPO4-5 with AFI structure containing 12-membered rings was prepared using the aluminum isopropoxide precursor as a source of alumina and TEA as the structure directing agent via microwave technique. The influence of microwave power and heating time on the dimensions of AlPO4-5 crystals formed in the system Al2O3:P2O5:(C2H5)3N (or (C3H7)3N):H2O:HF has been studied systematically. It was found that the morphology of the AlPO4-5 depended on the microwave power and heating time. Several mechanisms of fast crystallization existed in the microwave radiation, due to increased dissolution of the gel by lonely water molecules in almost temperature gradient-free and convection-free in situ heating.

Keywords

Aluminum isopropoxide Microwave heating technique AFI TEA 

References

  1. 1.
    S.H. Lee, P.S. Alegaonkar, J.H. Han, A.S. Berdinsky, D. Fink, Y.-U. Kwon, J.B. Yoo, C.Y. Park, Diam. Relat. Mater. 15, 1759 (2006)CrossRefGoogle Scholar
  2. 2.
    M.E. Davis, Nature 417, 813 (2002)CrossRefGoogle Scholar
  3. 3.
    Z.X. Chang, R. Koodali, R.M. Krishna, L. Kevan, J. Phys. Chem. B 104, 5579 (2000)CrossRefGoogle Scholar
  4. 4.
    B. Paizs, E. Tajkhorshid, S. Suhai, J. Phys. Chem. B 103, 5338 (1999)CrossRefGoogle Scholar
  5. 5.
    L. Domokos, L. Lefferts, K. Seshan, J.A. Lerchery, J. Catal. 203, 351 (2001)CrossRefGoogle Scholar
  6. 6.
    M. Höchtl, A. Jentys, H. Vinek, Appl. Catal. A 207, 397 (2001)CrossRefGoogle Scholar
  7. 7.
    S.C. Laha, G. Kamalakar, R. Glaser, Micropor. Mesopor. Mater. 90, 45 (2006)CrossRefGoogle Scholar
  8. 8.
    S.H. Jhung, J.-S. Chang, J.S. Hwang, S.-E. Park, Micropor. Mesopor. Mater. 64, 33 (2003)CrossRefGoogle Scholar
  9. 9.
    G. Tompsett, W.C. Conner, K.S. Yngvesson, Chem. Phys. Chem. 7, 296 (2006)Google Scholar
  10. 10.
    H.B. Du, M. Fang, W.G. Xu, X.P. Meng, W.Q. Pang, J. Mater. Chem. 7, 551 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Fang, H.B. Du, W.G. Xu, X.P. Meng, W.Q. Pang, Micropor. Mater. 9, 59 (1997)CrossRefGoogle Scholar
  12. 12.
    I. Braun, G. Schulz-Ekloff, D. Wohrle, W. Lautenschlager, Micropor. Mesopor. Mater. 23, 79 (1998)CrossRefGoogle Scholar
  13. 13.
    H.J. Sung, J.S. Chang, S.H. Jin, E.P. Sang, Micropor. Mesopor. Mater. 64, 33 (2003)CrossRefGoogle Scholar
  14. 14.
    M. Sathupunya, E. Gulari, S. Wongkasemjit, Mater. Chem. Phys. 83, 89 (2004)CrossRefGoogle Scholar
  15. 15.
    H.J. Sung, W.Y. Ji, K.H. Young, S.C. Jong, Micropor. Mesopor. Mater. 89, 9 (2006)CrossRefGoogle Scholar
  16. 16.
    Y.K. Hwang, J.S. Chang, Y.U. Kwon, S.E. Park, Stud. Surf. Sci. Catal. 146, 101 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Qiu, Q. Piang, H. Kessler, J.L. Guth, Zeolites 9, 440 (1989)CrossRefGoogle Scholar
  18. 18.
    G. Finger, J. Richter-Mendav, M. Bulow, J. Kornatowski, Zeolites 11, 443 (1991)CrossRefGoogle Scholar
  19. 19.
    I. Girnus, K. Jancke, R. Vetter, J. Richter-Mendau, J. Caro, Zeolites 15, 33 (1995)CrossRefGoogle Scholar
  20. 20.
    S. Mintova, S. Mo, T. Bein, Chem. Mater. 10, 4030 (1998)CrossRefGoogle Scholar
  21. 21.
    J.W. Richardson Jr., J.J. Pluth, J.V. Smith, Acta Crystallogr. C43, 1469 (1987)Google Scholar
  22. 22.
    T. Ikeda, K. Miyazawa, F. Izumi, Q. Huang, A. Santoro, J. Phys. Chem. Solids 60, 1531 (1999)CrossRefGoogle Scholar
  23. 23.
    K. Utchariyajit, S. Wongkasemjit, Micropor. Mesopor. Mater. 114, 175 (2008)CrossRefGoogle Scholar
  24. 24.
    D. Demuth, G.D. Stucky, K. Unger, F. Schüth, Micropor. Mater. 3, 473 (1995)CrossRefGoogle Scholar
  25. 25.
    G.J. Klap, H. van Koningsveld, H. Graafsma, A.M.M. Schreurs, Micropor. Mesopor. Mater. 38, 403 (2000)CrossRefGoogle Scholar
  26. 26.
    A. Iwasaki, T. Sano, T. Kodaira, Y. Kiyozumi, Micropor. Mesopor. Mater. 64, 145 (2003)CrossRefGoogle Scholar
  27. 27.
    J.-C. Lin, J.T. Dipre, M.Z. Yates, Langmuir 20, 1039 (2004)CrossRefGoogle Scholar
  28. 28.
    U. Vietze, O. Krauss, F. Laeri, G. Ihlein, F. Schuth, B. Limburg, M. Abraham, Phys. Rev. Lett. 81, 4628 (1998)CrossRefGoogle Scholar
  29. 29.
    N. Thong, D. Schwarzenbach, Acta Crystallogr. 53, 35 (1979)Google Scholar
  30. 30.
    S.H. Jhung, J.-S. Chang, D.S. Kim, S.-E. Park, Micropor. Mesopor. Mater. 71, 135 (2004)CrossRefGoogle Scholar
  31. 31.
    E. Jahn, D. Müller, W. Wieker, J. Richter-Mendau, Zeolites 9, 177 (1989)CrossRefGoogle Scholar
  32. 32.
    A.N. Christensen, T.R. Jensen, P. Norby, J.C. Hanson, Chem. Mater. 10, 1688 (1998)CrossRefGoogle Scholar
  33. 33.
    G.S. Zhu, F.S. Xia, S.L. Qui, P.C. Hun, R.R. Xu, S.J. Ma, O. Terasaki, Micropor. Mater. 11, 269 (1997)CrossRefGoogle Scholar
  34. 34.
    D.R. Gougeon, B.E. Brouwer, R.B. Philippe, L. Delmotte, C. Marichal, J.M. Chezeau, R.K. Harris, J. Phys. Chem. B 105, 12249 (2001)CrossRefGoogle Scholar
  35. 35.
    T. Araki, J.J. Finney, T. Zoltai, Am. Mineral. 53, 1096 (1968)Google Scholar
  36. 36.
    T. Kodaira, K. Miyazawa, T. Ikeda, Y. Kiyozumi, Micropor. Mesopor. Mater. 29, 329 (1999)CrossRefGoogle Scholar
  37. 37.
    R.C.L. Mooney, Acta Crystallogr. 9, 728 (1956)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityOrhanli, Tuzla, IstanbulTurkey

Personalised recommendations