Skip to main content
Log in

Dry gel conversion synthesis of shape controlled MFI type zeolite materials

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Acid treated silica fibers, coming either from asbestos cord waste or calcium aluminosilicate glass, were engaged as reactants to product MFI type zeolite fibers applying a dry gel conversion (DGC) type synthesis. The impact of amorphous silica fiber shape and synthesis conditions on morphology of the final product was investigated. Enhanced zeolite nucleation and restricted crystal growth are necessary to maintain the initial fiber morphology. Whereas a DGC type crystallization in hydroxide media results in the formation of zeolite fibers, the use of fluoride ions leads to the formation of large individual zeolite particles. Synthesis conditions have to be adapted to form zeolite particles with an average size smaller than the silica fiber diameter to allow a good conservation of the fiber morphology. Final zeolite fibers have textural properties comparable to a standard zeolite product and are promising for adsorption applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.G. Smirniotis, L. Davydov, Catal. Rev. 41, 43 (1999)

    Article  CAS  Google Scholar 

  2. T. Martin, A. Galarneau, F. Di Renzo, F. Fajula, D. Plee, Angew. Chem. Int. Ed. 41, 2590 (2002)

    Article  CAS  Google Scholar 

  3. A. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Z. Gao, Chem. Mater. 14, 3217 (2002)

    Article  CAS  Google Scholar 

  4. A. Dong, Y. Wang, D. Wang, W. Yang, Y. Zhang, N. Ren, Z. Gao, Y. Tang, Micropor. Mesopor. Mater. 64, 69 (2003)

    Article  CAS  Google Scholar 

  5. W. Song, R. Kanthasamy, V. H. Grassian, S. C. Larsen, Chem. Commun. 17, 1920 (2004)

    Article  Google Scholar 

  6. S. Mintova, M. Hölzl, V. Valtchev, B. Mihailova, Y. Bouizi, T. Bein, Chem. Mater. 16, 5452 (2004)

    Article  CAS  Google Scholar 

  7. R. Takahashi, S. Sato, T. Sodesawa, H. Nishino, A. Yachi, J. Ceram. Soc. Jpn. 114, 421 (2006)

    Article  CAS  Google Scholar 

  8. L.B. Tosheva, V.P. Valtchev, J. Sterte, Micropor. Mesopor. Mater. 35–36, 621 (2000)

    Article  Google Scholar 

  9. L.B. Tosheva, B. Mihailova, V.P. Valtchev, J. Sterte, Micropor. Mesopor. Mater. 48, 31 (2001)

    Article  CAS  Google Scholar 

  10. Y. Wang, Y. Tang, A. Dong, X. Wang, N. Ren, Z. Gao, J. Mater. Chem. 12, 1812 (2002)

    Article  CAS  Google Scholar 

  11. Y. Wang, Y. Tang, A. Dong, X. Wang, N. Ren, W. Shan, Z. Gao, Adv. Mater. 14, 994 (2002)

    CAS  Google Scholar 

  12. L.B. Tosheva, V.P. Valtchev, Chem. Mater. 17, 2494 (2005)

    Article  CAS  Google Scholar 

  13. A. Saavedra, A. De Figueiredo Costa, A. Da Silva Santos, G. T. Moure, R. E. Ronco-Latto, D. Stamires, P. O’Conner, Y. L. Lam, International Patent Application No. 01/12546 A1, 2001

  14. S.J. Miller, US Patent No. 5,558,851, 1996

  15. W. Xu, J. Dong, J. Li, J. Li, F. Wu, Chem. Commun. 10, 755 (1990)

    Google Scholar 

  16. S.M. Brown, V.A. Durante, W.J. Reagan, B.K. Speronello, US Patent No. 4,493,902, 1985

  17. M.V. Landau, N. Zaharur, M. Herskowitz, Appl. Catal. A: Gen. 115, 17 (1994)

    Article  Google Scholar 

  18. G. Majano, S. Mintova, O. Ovsitser, B. Mihailova, T. Bein, Micropor. Mesopor. Mater. 80, 227 (2005)

    Article  CAS  Google Scholar 

  19. L. Murrell, R. Overbeek, Y. Chang, N. Van der Puil, C. Y. Yeh, International Patent Application No. 99/16709, 1999

  20. S. Goergen, E. Guillon, J. Patarin, L. Rouleau, Micropor. Mesopor. Mater. (2009). doi:10.1016/j.micromeso.2009.06.019

  21. M.A. Saada, M. Soulard, J. Patarin, R.C. Regis, Micropor. Mesopor. Mater. 122, 275 (2009)

    Article  CAS  Google Scholar 

  22. B. Maquin, C. Jacquinod, D. Lefevre, A. Marchal, J. Patarin, V. Valtchev, A.C. Faust, O. Larlus, French Patent, 2 827 856, 2003

  23. J.L. Guth, L. Delmotte, M. Soulard, N. Brunard, J.F. Joly, D. Espinat, Zeolites 12, 929 (1992)

    Article  CAS  Google Scholar 

  24. R. Mostowicz, F. Crea, J.B. Nagy, Zeolites 13, 678 (1993)

    Article  CAS  Google Scholar 

  25. B.J. Schoeman, J. Sterte, Kona 15, 150 (1997)

    CAS  Google Scholar 

  26. M. Soulard, J. Patarin, V. Eroshenko, R.C. Regis, in Recent Advances in the Science and Technology of Zeolite and Related Materials, Studies in Surface Science and Catalysis, ed. by E. van Steen, M. Claeys, L.H. Callanan (Elsevier, Amsterdam, 2004), p. 1830

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the French ADEME agency (Agence de l’Environnement et de la Maîtrise de l’Energie). Thanks are due to Dr. R.-C. Regis for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Patarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goergen, S., Saada, M.A., Soulard, M. et al. Dry gel conversion synthesis of shape controlled MFI type zeolite materials. J Porous Mater 17, 635–641 (2010). https://doi.org/10.1007/s10934-009-9333-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9333-0

Keywords

Navigation