Skip to main content
Log in

Permeability of porous gelcast scaffolds for bone tissue engineering

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The permeability of metallic and ceramic open-cell foams prepared by the gelcasting technique was assessed by fitting of Forchheimer’s equation to experimental pressure drop curves. The ceramic composition was based on pure hydroxyapatite, while the metallic composition was based on titanium metal. Experimental Darcian (k 1) and non-Darcian (k 2) permeability constants displayed values in the range 0.40–3.24 × 10−9 m2 and 3.11–175.8 × 10−6 m respectively. Tortuosity was evaluated by gas diffusion experiments and ranged from 1.67 to 3.60, with porosity between 72 and 81% and average hydraulic pore size between 325 and 473 μm. Such features were compared to data reported in the literature for cancellous bones and synthetic scaffolds for bone graft. A detailed discussion concerning the limitations of Darcy’s law for fitting laboratory data and for predicting fluid flow through scaffolds in real biomedical applications is also performed. Pore size was obtained by image analysis and was also derived from permeation-absorption-diffusion experiments. In both cases, values were within the range expected for porous scaffolds applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A flow :

Face area of the sample exposed to flow (m2)

c :

Molar concentration of the gas mixture (mol/m3)

D AB :

Gas diffusivity in air (m2/s)

D eff :

Effective gas diffusivity through the scaffold (m2/s)

d :

Distance between the gas–liquid interface and the bottom face of the sample (m)

d h :

Hydraulic pore diameter (m)

d sphere :

Three-dimensional cell diameter (m)

d transp :

Pore diameter based on transport properties (m)

Fo :

Forchheimer number (−)

k 1 :

Darcian permeability constant (m2)

k 2 :

Non-Darcian permeability constant (m)

L :

Sample thickness along the macroscopic flow direction (m)

MM A :

Molar mass of diffusion gas (mol/kg)

N AZ :

Molar flux of diffusion gas along z-direction (mol/m2.s)

P :

Absolute fluid pressure at which v s, μ and ρ are measured or calculated (Pa)

P atm :

Atmospheric pressure at laboratory location (Pa)

P i :

Absolute fluid pressure at the sample entrance (Pa)

P o :

Absolute fluid pressure at the sample exit (Pa)

P VA :

Absolute vapor pressure of diffusion gas (Pa)

Q :

Volumetric flow rate (m3/s)

R :

Ideal gas constant (Pa m3/mol K)

Re pore :

Reynolds number at the pore level (−)

S :

Cross-sectional sample surface exposed to vapor diffusion (m2)

T :

Temperature of the fluid (K)

v i :

Interstitial fluid velocity (m/s)

v s :

Face or superficial fluid velocity (m/s)

z :

Distance in diffusion direction (m)

y :

Molar fraction of gas mixture (−)

Δm :

Mass variation measured during the diffusion experiment (kg)

ΔP :

Pressure drop through the medium (Pa)

ΔP viscous :

Pressure drop due to viscous effects (Pa)

ΔP inertial :

Pressure drop due to inertial effects (Pa)

Δt :

Duration of the diffusion experiment (s)

ε :

Porosity of the medium (−)

μ :

Absolute fluid viscosity (Pa s)

ρ :

Fluid density (kg/m3)

ρ b :

Bulk density of the scaffold (kg/m3)

ρ s :

Density of the solid fraction (kg/m3)

τ :

Tortuosity of the scaffold (−)

References

  1. P.K. Chu, X. Liu (eds.), Biomaterials Fabrication and Processing Handbook (CRC Press, Boca Raton, 2008)

    Google Scholar 

  2. M.M. Stevens, Biomaterials for bone tissue engineering. Mater Today 11(5), 18–25 (2008). doi:10.1016/S1369-7021(08)70086-5

    Article  CAS  Google Scholar 

  3. S. Oh, N. Oh, M. Appleford, J.L. Ong, Bioceramics for tissue engineering applications–A review. Am. J. Biochem. Biotechnol. 2(2), 49–56 (2006)

    Article  CAS  Google Scholar 

  4. M. Scheffler, P. Colombo (eds.), Cellular Ceramics: Structure, Manufacturing, Properties and Applications (Wiley, New York, 2005)

    Google Scholar 

  5. H. Nakajima, Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091–1173 (2007). doi:10.1016/j.pmatsci.2006.09.001

    Article  CAS  Google Scholar 

  6. R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, T. Imwinkelried, Characterization of the structure and permeability of titanium foams for spinal fusion devices. Acta Biomater. 5, 477–487 (2009). doi:10.1016/j.actbio.2008.06.014

    Article  CAS  Google Scholar 

  7. L.M.R. Vasconcellos, M.V. Oliveira, M.L.A. Graça, L.G.O. Vasconcellos, Y.R. Carvalho, C.A.A. Cairo, Porous titanium scaffolds produced by powder metallurgy for biomedical applications. Mater Res. 11(3), 275–280 (2008). doi:10.1590/S1516-14392008000300008

    Google Scholar 

  8. S.C.P. Cachinho, R.N. Correia, Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behaviour. J. Mater Sci. Mater Med. 19(1), 451–457 (2008). doi:10.1007/s10856-006-0052-7

    Article  CAS  Google Scholar 

  9. E. Zhang, C. Zou, Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process: characterization and in vivo evaluation. Acta Biomater. (2009). doi: 10.1016/j.actbio.2009.01.014

  10. H. Petite, R. Quarto (eds.), Engineered Bone (Tissue Engineering Intelligence Unit) (Landes Bioscience, Austin, 2005)

    Google Scholar 

  11. M.D.M. Innocentini, P. Sepulveda, V.R. Salvini, J.R. Coury, V.C. Pandolfelli, Permeability and structure of cellular ceramics: a comparison between two preparation techniques. J. Am. Ceram. Soc. 81(12), 3349–3352 (1998). doi:10.1111/j.1151-2916.1998.tb02782.x

    Article  CAS  Google Scholar 

  12. S. Li, J.R. De Wijn, J. Li, P. Layrolle, K. De Groot, Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng. 9(3), 535–548 (2003). doi:10.1089/107632703322066714

    Article  CAS  Google Scholar 

  13. P. Sepulveda, F. Ortega, M.D.M. Innocentini, V.C. Pandolfelli, Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. J. Am. Ceram. Soc. 83(12), 3021–3024 (2001)

    Article  Google Scholar 

  14. S. Impens, R. Schelstraete, J. Luyten, S. Mullens, I. Thijs, J. Van Humbeeck, J. Schrooten, Production and characterization of porous calcium phosphate structures with controllable hydroxyapatite/b-tricalcium phosphate ratios. Proceedings of the 10th international conference on ceramic processing science, May 25–28, 2008 in Inuyama, Japan

  15. C.M. Agrawal, J.S. McKinney, D. Lanctot, K.A. Athanasiou, Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 21, 2443–2452 (2000). doi:10.1016/S0142-9612(00)00112-5

    Article  CAS  Google Scholar 

  16. M.D.M. Innocentini, V.R. Salvini, A. Macedo, V.C. Pandolfelli, Prediction of ceramic foams permeability using Ergun’s equation. Mater Res. 2(4), 283–289 (1999). doi:10.1590/S1516-14391999000400008

    CAS  Google Scholar 

  17. M.D.M. Innocentini, P. Sepulveda, F. Ortega, Permeability, in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, ed. by M. Scheffler, P. Colombo (Wiley, New York, 2005), pp. 313–340

    Google Scholar 

  18. A.A. Garrouch, L. Ali, F. Qasem, Using diffusion and electrical measurements to assess tortuosity of porous media. Ind. Eng. Chem. Res. 40, 4363–4369 (2001). doi:10.1021/ie010070u

    Article  CAS  Google Scholar 

  19. B. Starly, E. Yildirim, W. Sun, A tracer metric numerical model for predicting tortuosity factors in three-dimensional porous tissue scaffolds. Comput. Methods Programs Biomed. 87, 21–27 (2007). doi:10.1016/j.cmpb.2007.04.003

    Article  CAS  Google Scholar 

  20. L. Shen, Z. Chen, Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62, 3748–3755 (2007). doi:10.1016/j.ces.2007.03.041

    Article  CAS  Google Scholar 

  21. R.B. Bird, W.E. Steward, Lightfoot EN Transport Phenomena (Wiley, New York, 1960)

    Google Scholar 

  22. J.R. Welty, C.E. Wicks, R.E. Wilson, Fundamentals of Momentum, Heat and Mass Transfer (Wiley, New York, 1984)

    Google Scholar 

  23. R.M. Felder, R.W. Rousseau, Elementary Principles of Chemical Processes, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  24. M.D.M. Innocentini, V.R. Salvini, J.R. Coury, V.C. Pandolfelli, The Permeability of ceramic foams. Am Ceram Soc Bull 78(9), 78–84 (1999)

    CAS  Google Scholar 

  25. E.A. Moreira, M.D.M. Innocentini, J.R. Coury, Permeability of ceramic foams to compressible and incompressible flow. J. Eur. Ceram Soc. 24(10–11), 3209–3218 (2004). doi:10.1016/j.jeurceramsoc.2003.11.014

    Article  CAS  Google Scholar 

  26. L. Biasetto, P. Colombo, M.D.M. Innocentini, S. Mullens, Gas permeability of microcellular ceramic foams. Ind. Eng. Chem. Res. 46, 3366–3372 (2007). doi:10.1021/ie061335d

    Article  CAS  Google Scholar 

  27. D. Seguin, A. Montillet, J. Comiti, Experimental characterisation of flow regimes in various porous media–I: Limit of laminar flow regime. Chem. Eng. Sci. 53(21), 3751–3761 (1998). doi:10.1016/S0009-2509(98)00175-4

    Article  CAS  Google Scholar 

  28. D. Seguin, A. Montillet, J. Comiti, F. Huet, Experimental characterisation of flow regimes in various porous media–II: Transition to turbulent regime. Chem. Eng. Sci. 53(22), 3897–3909 (1998). doi:10.1016/S0009-2509(98)80003-1

    Article  CAS  Google Scholar 

  29. D. Hlushkou, U. Tallarek, Transition from creeping via viscous-inertial to turbulent flow in fixed beds. J. Chromatogr. A 1126, 70–85 (2006). doi:10.1016/j.chroma.2006.06.011

    Article  CAS  Google Scholar 

  30. S. Mullens, J. Luyten, J. Zeschky, Characterization of Structure and Morphology, in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, ed. by M. Scheffler, P. Colombo (Wiley, New York, 2005), pp. 227–266

    Google Scholar 

  31. I. Ochoa, J.A. Sanz-Herrera, J.M. Garcia-Aznar, M. Doblaré, D.M. Yunos, A.R. Boccaccini (2008) Permeability evaluation of 45S5 Bioglass-based scaffolds for bone tissue engineering. J Biomech. doi:10.1016/j-jbiomech.2008.10.030

  32. A.C. Jones, C.H. Arns, D.W. Hutmacher, B.K. Milthorpe, A.P. Sheppard, M.A. Knackstedt, The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30, 1440–1451 (2009). doi:10.1016/j.biomaterials.2008.10.056

    Article  CAS  Google Scholar 

  33. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005). doi:10.1016/j.biomaterials.2005.02.002

    Article  CAS  Google Scholar 

  34. W. Lauriks, J. Thoen, I.V. Asbroeck, G. Lowet, G.V.D. Perre, Propagation of ultrasonic pulses through trabecular bone, Journal de Physique IV, colloque C5, supplement au Journal de Physique III, vol. 4, may 1994

  35. J.A. Sanz-Herrera, J.M. García-aznar, M. Doblaré, On scaffold designing for bone regeneration: A multiscale approach. Acta Biomater. 5, 219–229 (2009). doi:10.1016/j.actbio.2008.06.021

    Article  CAS  Google Scholar 

  36. P.W. Hui, P.C. Leung, A. Sher, Fluid conductance of cancellous bone graft as a predictor for graft-host interface healing. J. Biomech. 29(1), 123–132 (1996). doi:10.1016/0021-9290(95)00010-0

    Article  CAS  Google Scholar 

  37. A.J. Beaudoin, W.M. Mihalko, W.R. Krause, Finite element modeling of polymethylmethacrylate flow through cancellous bone. J. Biomech. 24(2), 127–136 (1991). doi:10.1016/0021-9290(91)90357-S

    Article  CAS  Google Scholar 

  38. S.S. Kohles, J.B. Roberts, M.L. Upton, C.G. Wilson, L.J. Bonassar, A.L. Schlichting, Direct perfusion measurements of cancellous bone anisotropic permeability. J. Biomech. 34, 1197–1202 (2001). doi:10.1016/S0021-9290(01)00082-3

    Article  CAS  Google Scholar 

  39. T.H. Lim, J.H. Hong, Poroelastic properties of bovine vertebral trabecular bone. J. Orthop. Res. 18(4), 671–677 (2000). doi:10.1002/jor.1100180421

    Article  CAS  Google Scholar 

  40. E.A. Nauman, K.E. Fong, T.M. Keaveny, Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27, 517–524 (1999). doi:10.1114/1.195

    Article  CAS  Google Scholar 

  41. J.A. Ochoa, B.M. Hillberry (1992) Permeability of bovine cancellous bone. Transactions ORS17:162

    Google Scholar 

  42. M.J. Grimm, J.L. Williams, Measurement of permeability in calcaneal trabecular bone. J. Biomech. 30(7), 743–745 (1997). doi:10.1016/S0021-9290(97)00016-X

    Article  CAS  Google Scholar 

  43. D.A. Shimko, V.F. Shimko, E.A. Sander, K.F. Dickson, E.A. Nauman, Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J. Biomed. Mater. Res. B 73, 315–324 (2005)

    Google Scholar 

  44. S.M. Haddock, J.C. Debes, E.A. Nauman, K.E. Fong, Y.P. Arramon, T.M. Keaveny, Structure–function relationships for coralline hydroxyapatite bone substitute. J. Biomed. Mater. Res. 47, 71–78 (1999). doi:10.1002/(SICI)1097-4636(199910)47:1<71:AID-JBM10>3.0.CO;2-U

    Article  CAS  Google Scholar 

  45. P. Swider, M. Conroy, A. Pédrono, D. Ambard, S. Mantell, K. Soballe, J.E. Bechtold, Use of high-resolution MRI for investigation of fluid flow and global permeability in a material with interconnected porosity. J Biomech 40, 2112–2118 (2007). doi:10.1016/j.jbiomech.2006.10.002

    Article  Google Scholar 

  46. F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 15, 3–17 (2007)

    Google Scholar 

  47. D. Ruth, H. Ma, On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Media 7, 255–264 (1992). doi:10.1007/BF01063962

    Article  CAS  Google Scholar 

  48. R.H. Vera, E. Genové, L. Alvarez, S. Borrós, R. Kamm, D. Lauffenburger, C.E. Semino, Interstitial fluid flow intensity modulates endothelial sprouting in restricted Src-activated cell clusters during capillary morphogenesis. Tissue Eng Part A 15(1), 175–185 (2009). doi:10.1089/ten.tea.2007.0314

    Article  Google Scholar 

  49. C. Sandino, J.A. Planell, D. Lacroix, A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J. Biomech. 41, 1005–1014 (2008). doi:10.1016/j.jbiomech.2007.12.011

    Article  CAS  Google Scholar 

  50. R.M. Dillaman, R.D. Roer, D.M. Gay, Fluid movement in bone: theoretical and empirical. J. Biomech. 24(Suppl 1), 163–177 (1991). doi:10.1016/0021-9290(91)90386-2

    Article  Google Scholar 

  51. R.J. Montgomery, B.D. Sutker, J.T. Bronk, S.R. Smith, P.J. Kelly, Interstitial fluid flow in cortical bone. Microvasc. Res. 35, 295–307 (1988). doi:10.1016/0026-2862(88)90084-2

    Article  CAS  Google Scholar 

  52. I.D. McCarthy, L. Yang, A distributed model of exchange processes within the osteon. J. Biomech. 25, 441–450 (1992). doi:10.1016/0021-9290(92)90263-Z

    Article  CAS  Google Scholar 

  53. M.V. Hillsley, J.A. Frangos, Review: Bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng. 43, 573–581 (1994). doi:10.1002/bit.260430706

    Article  CAS  Google Scholar 

  54. P. Moldrup, T. Olesen, T. Komatsu, P. Schjønning, D.E. Rolston, Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci. Soc. Am. J. 65, 613–623 (2001)

    Article  CAS  Google Scholar 

  55. R.J. Millington, J.M. Quirk, Formation factor and permeability equations. Nature 202, 143–145 (1964). doi:10.1038/202143a0

    Article  Google Scholar 

  56. B.C. Ball, M.F. O’Sullivan, R. Hunter, Gas diffusion, fluid flow and derived pore continuity indices in relation to vehicle traffic and tillage. J. Soil Sci. 39, 327–339 (1988). doi:10.1111/j.1365-2389.1988.tb01219.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank VITO for supplying samples and MCT/CNPq, Process 471814/2088 3, for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. M. Innocentini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocentini, M.D.M., Faleiros, R.K., Pisani, R. et al. Permeability of porous gelcast scaffolds for bone tissue engineering. J Porous Mater 17, 615–627 (2010). https://doi.org/10.1007/s10934-009-9331-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9331-2

Keywords

Navigation