Skip to main content

Advertisement

Log in

Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A vertically aligned titania nanotube layer on titanium surface was prepared by electrochemical anodic oxidation in an F-containing electrolyte, followed by annealing at 450 °C. Bioactive hydroxyapatite (HA) coatings on as anodized titania nanotube layer were obtained by a biomimetic method without other surface treatment. The morphology, crystal structure, and components of the titania nanotube layer and bioactive coatings were examined by scanning electron microscopy, thin film X-ray diffraction, and Fourier transform infrared spectroscopy. The bond strength between the HA coatings and substrates was tested using a mechanical tester. The diameter of the titania nanotubes was about 100 nm, the wall thickness about 19 nm and the height about 1 μm. HA rapidly deposited on the as anodized nanotube surface after immersion in a biomineral solution only for 1 day. The HA coatings were carbonated apatite and composed of a number of column-like crystals with nanometer size. Tensile test shows that the bond strength between the HA coating and the nanotube layer was larger than 15.3 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.M. Kim, F. Miyaji, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 32, 409 (1996). doi:10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B

    Article  CAS  Google Scholar 

  2. M.J. Shirkhanzadeh, Mater. Sci. Mater. Med. 6, 90 (1995). doi:10.1007/BF00120414

    Article  CAS  Google Scholar 

  3. J. Takebe, S. Itoh, J. Okada, K. Ishibashi, J. Biomed. Mater. Res. 51, 398 (2000). doi:10.1002/1097-4636(20000905)51:3<398::AID-JBM14>3.0.CO;2-#

    Article  CAS  Google Scholar 

  4. B. Feng, J.Y. Chen, S.K. Qi, L. He, J.Z. Zhao, X.D. Zhang, Biomaterials 23, 173 (2002). doi:10.1016/S0142-9612(01)00093-X

    Article  CAS  Google Scholar 

  5. T. Kokubo, S. Ito, Z.T. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 331 (1990). doi:10.1002/jbm.820240306

    Article  CAS  Google Scholar 

  6. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi:10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  7. G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, J. Mater. Res. 18, 2588 (2003). doi:10.1557/JMR.2003.0362

    Article  CAS  Google Scholar 

  8. J.L. Zhao, W.X. Hang, R.Z. Chen, L.T. Li, Solid State Commun. 134, 705 (2005). doi:10.1016/j.ssc.2005.02.028

    Article  CAS  Google Scholar 

  9. I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Electrochem. Commun. 7, 97 (2005). doi:10.1016/j.elecom.2004.11.012

    Article  CAS  Google Scholar 

  10. H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun. 7, 295 (2005). doi:10.1016/j.elecom.2005.01.003

    Article  CAS  Google Scholar 

  11. J. Choi, R.B. Wehrspohn, U. Gösele, J. Lee, Electrochim. Acta 49, 2645 (2004). doi:10.1016/j.electacta.2004.02.015

    Article  CAS  Google Scholar 

  12. R. Chu, J. Yan, S. Lian, Y. Wang, F. Yan, D. Chen, Solid State Commun. 130, 789 (2004). doi:10.1016/j.ssc.2004.04.013

    Article  CAS  Google Scholar 

  13. S.H. Oh, R.R. Finones, C. Daraio, L.H. Chen, S.H. Jin, Biomaterials 26, 4938 (2005). doi:10.1016/j.biomaterials.2005.01.048

    Article  CAS  Google Scholar 

  14. S.H. Oh, S.H. Jin, Mater. Sci. Eng. C 26, 1301 (2006). doi:10.1016/j.msec.2005.08.014

    Article  CAS  Google Scholar 

  15. A. Kar, K.S. Raja, M. Misra, Surf. Coat. Technol. 201, 3723 (2006). doi:10.1016/j.surfcoat.2006.09.008

    Article  CAS  Google Scholar 

  16. H. Tsuchiya, J.M. Macak, L. Muller, J. Kunze, F. Muller, P. Greil, S. Virtanen, P. Schmuki, J. Biomed. Mater. Res. A 3, 534 (2006)

    Google Scholar 

  17. M. Uchida, H.M. Kim, T. Kokubo, S. Fujibayashi, T. Nakamura, J. Biomed. Mater. Res. 64, 164 (2003). doi:10.1002/jbm.a.10414

    Article  Google Scholar 

  18. J.W. Cahn, Crystal growth (Pergamon Press, Oxford, 1967), p. 681

    Google Scholar 

  19. X.F. Xiao, T. Tian, R.F. Liu, H.-D. She, Mater. Chem. Phys. 106, 27 (2007). doi:10.1016/j.matchemphys.2007.05.014

    Article  CAS  Google Scholar 

  20. J. Kunze, L. Müller, J.M. Macak, P. Greil, P. Schmuki, F.A. Müller, Electrochim. Acta 53, 6995 (2008). doi:10.1016/j.electacta.2008.01.027

    Article  CAS  Google Scholar 

  21. ISO. Implants for surgery-hydroxyapatite-part 4: determination of coating adhesion strength. ISO 13779-4 2002

  22. H.F. Qi, A. Fernandes, E. Pereira, J. Grocio, Diam. Relat. Mater. 8, 1549 (1999). doi:10.1016/S0925-9635(99)00064-3

    Article  Google Scholar 

  23. B.A. Della, K.J. Anusavice, J.A.A. Hood, Int. J. Prosthodont. 15, 248 (2002)

    Google Scholar 

  24. W.K. Asbeck, JCT Coat. Technol. 2, 48 (2005)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese NSFC (50871093), FANEDD (200554), and National Key Project of Scientific and Technical Supporting Programs Funded by MSTC (2006BAI16B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, B., Chu, X., Chen, J. et al. Hydroxyapatite coating on titanium surface with titania nanotube layer and its bond strength to substrate. J Porous Mater 17, 453–458 (2010). https://doi.org/10.1007/s10934-009-9307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9307-2

Keywords

Navigation