Journal of Porous Materials

, Volume 17, Issue 3, pp 367–375 | Cite as

Degradation of basic blue 9 dye by CoS/nanoAlMCM-41 catalyst under visible light irradiation

Article

Abstract

The photocatalytic degradation of basic blue 9 was investigated in aqueous solution containing CoS/nanoAlMCM-41 photocatalyst under visible light. The catalyst is characterized by X-ray diffraction (XRD), UV–Vis diffused reflectance spectra (UV–Vis DRS) and scanning electron microscopy (SEM) techniques. The effect of CoS, nanoAlMCM-41 support and different weight percentage of CoS over the support on the photocatalytic degradation and influence of parameters such as CoS loading, catalyst a mount, pH and initial concentration of basic blue 9 on degradation are evaluated. CoS/nanoAlMCM-41 composite (17 wt%) is found to be optimum. The degradation reaction follows pseudo-first order kinetics. The effect of dosage of photocatalyst was studied in the range 0.04–1.2 g/L. It was seen that 0.8 g/L of photocatalyst is an optimum value for the dosage of photocatalyst. The degradation efficiency was decreased in dye concentration above 3.2 ppm for basic blue 9 dye. In the best conditions, the degradation efficiency was obtained 0.32 ppm for basic blue 9 dye.

Keywords

Photodegradation Basic blue 9 NanoAlMCM-41 Photocatalyst X-ray diffraction Diffuse reflectance spectroscopy 

References

  1. 1.
    J. Li, Sh. Liu, Y. He, J. Wang, Microporous Mesoporous Mater. 115, 416 (2008)CrossRefGoogle Scholar
  2. 2.
    J.T. Rajesh, K.S. Praveen, A.L. Manoj, V.J. Raksh, Ing. Eng. Chem. Res. 47, 7545 (2008)CrossRefGoogle Scholar
  3. 3.
    P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 4, 501 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Pratap Reddy, A. Venugogal, M. Subrahmanyam, Appl. Catal. B 69, 164 (2006)CrossRefGoogle Scholar
  5. 5.
    V.D. Kumari, M. Subrahmanyam, K.V. Subba Rao, A. Ratnamala, M. Noorjahan, K. Tanaka, Appl. Catal. A 234, 155 (2002)CrossRefGoogle Scholar
  6. 6.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  7. 7.
    Sh. Yin, Y. Aita, M. Komatsu, J. Wand, Q. Tang, T. Sato, J. Mater. Chem. 15, 674 (2005)CrossRefGoogle Scholar
  8. 8.
    D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Willey, New York, 1974)Google Scholar
  9. 9.
    H.V. Bekhum, E.M. Flanigen, J.C. Jansen, Introduction to Zeolite Science and Practice (Elsevier, Amsterdam, 1991)Google Scholar
  10. 10.
    N.J. Turro, Acc. Chem. Res. 33, 637 (2000)CrossRefGoogle Scholar
  11. 11.
    A. Corma, Chem. Rev. 95, 559 (1995)CrossRefGoogle Scholar
  12. 12.
    S. Anandan, M. Yoon, J. Photochem. Photobiol. C 4, 5 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Pourahmad, Sh. Sohrabnezhad, M.S. Sadgadi, K. Zare, Mater. Lett. 62, 655 (2008)CrossRefGoogle Scholar
  14. 14.
    Sh. Sohrabnezhad, A. Pourahmad, Mater. Chem. Phys. 111, 396 (2008)CrossRefGoogle Scholar
  15. 15.
    E.P. Reddy, B. Sun, P.G. Smirniotis, J. Phys. Chem. B 108, 17198 (2004)CrossRefGoogle Scholar
  16. 16.
    N. Dubey, S.S. Rayalu, Nk. Labhsetwar, R.R. Naidu, R.V. Chatti, S. Devotta, Appl. Catal. A 303, 152 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Nikazar, K. Gholivand, K. Mahanpoor, Desalination 219, 293 (2008)CrossRefGoogle Scholar
  18. 18.
    J.K. Reddy, V.D. Kumari, M. Subrahmanyam, Catal. Lett. 123, 301 (2008)CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, J. Phys. Chem. 102, 10871 (1998)Google Scholar
  20. 20.
    Q. Cai, Zh.-Sh. Luo, W.Q. Pang, Yu.-W. Fan, Xi–.H. Chen, Fu.-Zh. Cui, Chem. Mater. 13, 258 (2001)CrossRefGoogle Scholar
  21. 21.
    M.-Ch. Chao, H.-P. Lin, Ch.-Y. Mou, B.O.-W. Cheng, Ch.-F. Cheng, Catal. Today 4, 81 (2004)CrossRefGoogle Scholar
  22. 22.
    Q. Wang, Zh. Xu, H. Yin, Q. Ne, Mater. Chem. Phys. 90, 73 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Hernandez-Guervara, A. Cruz-Orea, O. Vigil, H. Villavicencio, F. Sanchez-Sinencio, Mater. Lett. 44, 330 (2000)CrossRefGoogle Scholar
  24. 24.
    H.G. Chen, K.L. Shi, H.R. Chen, J.N. Yan, Y.S. Li, Z.L. Hua, Y. Yang, D.S. Yan, Opt. Mater. 25, 79 (2004)CrossRefGoogle Scholar
  25. 25.
    Q.-Zh. Zhai, T.-Su. Jiang, W.-H. Hu, X. Guan, W. Wang, S.H. Qiu, Mater. Res. Bull. 37, 1837 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Wang, S. Uma, K.J. Klabunde, Appl. Catal. B 48, 151 (2004)CrossRefGoogle Scholar
  27. 27.
    T. Arthi, P. Narahari, G. Madras, J. Hazard. Mater. 149, 725 (2007)CrossRefGoogle Scholar
  28. 28.
    Phanikrishna Sharma MV, Kumari VD, Subrahmanyam M, J. Hazard. Mater. 160, 568 (2008)CrossRefGoogle Scholar
  29. 29.
    C.C. Wang, C.K. Lee, M.D. Lyu, L.C. Juang, Dyes Pigments 76, 817 (2008)CrossRefGoogle Scholar
  30. 30.
    W.Y. Wang, Y. Ku, Colloids Surf. A 302, 261 (2007)CrossRefGoogle Scholar
  31. 31.
    M.A. Barakat, H. Schaffer, G. Hayes, S. Ismat-Shah, Appl. Catal. B 7, 23 (2004)Google Scholar
  32. 32.
    C. Wu, X. Liu, D. Wei, J. Fan, J. Wang, Water Res. 35, 3927 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceIslamic Azad UniversityRashtIran
  2. 2.Department of Chemistry, Faculty of ScienceUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations