Skip to main content
Log in

Roles of trifluoroacetic acid, acetic acid and their salts in the synthesis of helical mesoporous materials

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Helical mesoporous materials have attracted much attention due to their potential applications in catalysis and chiral recognition. In this paper, we have systematically studied the influence of trifluoroacetic acid, acetic acid and their salts on the synthesis of helical mesoporous materials in the presence of a cationic surfactant cetyltrimethylammonium bromide (CTAB) as a template. Results show that helical mesostructures can be successfully synthesized when CF3COO anions were used as additives with an additive/CATB molar ratio (R) range of 0.1–0.375 for the CF3COOH/CTAB templating system and a relatively wider R range of 0.1–0.5 for the CF3COONa/CTAB templating system, which can be attributed to the influence of pH caused by the acid- or salt-form of additives. The pitch sizes of the helical mesostructures can be finely controlled by varying the additive/CTAB ratio. The results indicate that in order to synthesize helical mesostructures in a broad range of additive/CTAB ratios, the perfluorinated salt with a short fluorocarbon chain should be used. Our synthesis strategy can be used for the fabrication of helical mesostructured porous materials with adjustable pore and helical pitch sizes, which are important in their potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.M. Yang, I. Sokolov, N. Coombs, C.T. Kresge, G.A. Ozin, Adv. Mater. 11, 1427 (1999). doi:10.1002/(SICI)1521-4095(199912)11:17<1427::AID-ADMA1427>3.0.CO;2-3

    Article  CAS  Google Scholar 

  2. A. Maritan, C. Micheletti, A. Trovato, J.R. Banavar, Nature 406, 287 (2000). doi:10.1038/35018538

    Article  CAS  Google Scholar 

  3. Y.Y. Wu, G.S. Cheng, K. Katsov, S.W. Sides, J.F. Wang, J. Tang, G.H. Fredrickson, M. Moskovits, G.D. Stucky, Nat. Mater. 3, 816 (2004). doi:10.1038/nmat1230

    Article  CAS  Google Scholar 

  4. S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature 429, 281 (2004). doi:10.1038/nature02529

    Article  CAS  Google Scholar 

  5. T.E. Gier, X.H. Bu, P.Y. Feng, G.D. Stucky, Nature 395, 154 (1998). doi:10.1038/25960

    Article  CAS  Google Scholar 

  6. D. Bradshaw, T.J. Prior, E.J. Cussen, J.B. Claridge, M.J. Rosseinsky, J. Am. Chem. Soc. 126, 6106 (2004). doi:10.1021/ja0316420

    Article  CAS  Google Scholar 

  7. X. Yan, F. Wei, S.P. Elangovan, M. Ogura, T. Okubo, Eur. J. Inorg. Chem. 2004, 4547 (2004). doi:10.1002/ejic.200400566

    Article  Google Scholar 

  8. Y.G. Yang, M. Suzuki, H. Fukui, H. Shirai, K. Hanabusa, Chem. Mater. 18, 1324 (2006). doi:10.1021/cm0519030

    Article  CAS  Google Scholar 

  9. Y.G. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, J. Am. Chem. Soc. 129, 581 (2007). doi:10.1021/ja064240b

    Article  CAS  Google Scholar 

  10. Y.G. Yang, M. Nakazawa, M. Suzuki, H. Shirai, K. Hanabusa, J. Mater. Chem. 17, 2936 (2007). doi:10.1039/b700615b

    Article  CAS  Google Scholar 

  11. B. Wang, C. Chi, W. Shan, Y.H. Zhang, N. Ren, W.L. Yang, Y. Tang, Angew. Chem. Int. Ed. 45, 2088 (2006). doi:10.1002/anie.200504191

    Article  CAS  Google Scholar 

  12. J.G. Wang, W.Q. Wang, P.C. Sun, Z.Y. Yuan, B.H. Li, Q.H. Jin, D.T. Ding, T.H. Chen, J. Mater. Chem. 16, 4117 (2006). doi:10.1039/b609243h

    Article  CAS  Google Scholar 

  13. Y. Han, L. Zhao, J.Y. Ying, Adv. Mater. 19, 2454 (2007). doi:10.1002/adma.200602703

    Article  CAS  Google Scholar 

  14. G.L. Lin, Y.H. Tsai, H.P. Lin, C.Y. Tang, C.Y. Lin, Langmuir 23, 4115 (2007). doi:10.1021/la070154t

    Article  CAS  Google Scholar 

  15. K.U. Jeong, S. Jin, J.J. Ge, B.S. Knapp, M.J. Graham, J.J. Ruan, M.M. Guo, H.M. Xiong, F.W. Harris, S.Z.D. Cheng, Chem. Mater. 17, 2852 (2005). doi:10.1021/cm050338y

    Article  CAS  Google Scholar 

  16. J.G. Wang, W.Q. Wang, P.C. Sun, Z.Y. Yuan, Q.H. Jin, D.T. Ding, T.H. Chen, Mater. Lett. 61, 4492 (2007). doi:10.1016/j.matlet.2007.02.031

    Article  CAS  Google Scholar 

  17. X.W. Wu, J.F. Ruan, T. Ohsuna, O. Terasaki, S.N. Che, Chem. Mater. 19, 1577 (2007). doi:10.1021/cm062368m

    Article  CAS  Google Scholar 

  18. Y.G. Yang, M. Nakazawa, M. Suzuki, M. Kimura, H. Shirai, K. Hanabusa, Chem. Mater. 16, 3791 (2004). doi:10.1021/cm0489993

    Article  CAS  Google Scholar 

  19. X.W. Wu, H.Y. Jin, Z. Liu, T. Ohsuna, O. Terasaki, K. Sakamoto, S.N. Che, Chem. Mater. 18, 241 (2006). doi:10.1021/cm052085e

    Article  Google Scholar 

  20. S.M. Yang, W.J. Kim, Adv. Mater. 13, 1191 (2001). doi:10.1002/1521-4095(200108)13:15<1191::AID-ADMA1191>3.0.CO;2-3

    Article  Google Scholar 

  21. T. Yokoi, Y. Yamataka, Y. Ara, S. Sato, Y. Kubota, T. Tatsumi, Microporous. Mesoporous. Mater. 103, 20 (2007). doi:10.1016/j.micromeso.2007.01.018

    Article  CAS  Google Scholar 

  22. Y. Snir, R.D. Kamien, Science 307, 1067 (2005). doi:10.1126/science.1106243

    Article  CAS  Google Scholar 

  23. Y.G. Yang, M. Suzuki, H. Shirai, A. Kurose, K. Hanabusa, Chem. Commun. (Camb) 2032 (2005). doi:10.1039/b418267g

  24. Y.G. Yang, M. Suzuki, S. Owa, H. Shirai, K. Hanabusa, Chem. Commun. (Camb) 4462 (2005). doi:10.1039/b508106h

  25. S. Yang, L.Z. Zhao, C.Z. Yu, X.F. Zhou, J.W. Tang, P. Yuan, D.Y. Chen, D.Y. Zhao, J. Am. Chem. Soc. 128, 10460 (2006). doi:10.1021/ja0619049

    Article  CAS  Google Scholar 

  26. S. Yang, X.F. Zhou, P. Yuan, M.H. Yu, S.G. Xie, J. Zou, G.Q. Lu, C.Z. Yu, Angew. Chem. Int. Ed. 46, 8579 (2007). doi:10.1002/anie.200703628

    Article  CAS  Google Scholar 

  27. K. Wang, G. Karlsson, M. Almgren, T. Asakawa, J. Phys. Chem. B 103, 9237 (1999). doi:10.1021/jp990821u

    Article  CAS  Google Scholar 

  28. A.F. Thunemann, Langmuir 16, 824 (2000). doi:10.1021/la9907026

    Article  Google Scholar 

  29. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992). doi:10.1038/359710a0

    Article  CAS  Google Scholar 

  30. P.J. Branton, P.G. Hall, K.S.W. Sing, H. Reichert, F. Schuth, K.K. Unger, J. Chem. Soc. Faraday Trans. 90, 2965 (1994). doi:10.1039/ft9949002965

    Article  CAS  Google Scholar 

  31. R. Schmidt, E.W. Hansen, M. Stocker, D. Akporiaye, O.H. Ellestad, J. Am. Chem. Soc. 117, 4049 (1995). doi:10.1021/ja00119a021

    Article  CAS  Google Scholar 

  32. S.L. Hsu, N. Reynolds, S.P. Bohan, H.L. Strauss, R.G. Snyder, Macromolecules 23, 4565 (1990). doi:10.1021/ma00223a012

    Article  CAS  Google Scholar 

  33. D. Jacquemain, S.G. Wolf, F. Leveiller, F. Frolow, M. Eisenstein, M. Lahav, L. Leiserowitz, J. Am. Chem. Soc. 114, 9983 (1992). doi:10.1021/ja00051a034

    Article  CAS  Google Scholar 

  34. S. Shin, N. Collazo, S.A. Rice, J. Chem. Phys. 96, 1352 (1992). doi:10.1063/1.462171

    Article  CAS  Google Scholar 

  35. S.W. Barton, A. Goudot, O. Bouloussa, F. Rondelez, B.H. Lin, F. Novak, A. Acero, S.A. Rice, J. Chem. Phys. 96, 1343 (1992). doi:10.1063/1.462170

    Article  CAS  Google Scholar 

  36. H.G. Cho, H.L. Strauss, R.G. Snyder, J. Phys. Chem. 96, 5290 (1992). doi:10.1021/j100192a022

    Article  CAS  Google Scholar 

  37. C. Chothia, Nature 248, 338 (1974). doi:10.1038/248338a0

    Article  CAS  Google Scholar 

  38. E.W. Anacker, H.M. Ghose, J. Am. Chem. Soc. 90, 3161 (1968). doi:10.1021/ja01014a034

    Article  CAS  Google Scholar 

  39. G. Porte, J. Appell, Y. Poggl, J. Phys. Chem. 84, 3105 (1980). doi:10.1021/j100460a027

    Article  CAS  Google Scholar 

  40. A.L. Underwood, E.W. Anacker, J. Colloid Interface Sci. 117, 242 (1987). doi:10.1016/0021-9797(87)90188-3

    Article  CAS  Google Scholar 

  41. A.L. Underwood, E.W. Anacker, J. Colloid Interface Sci. 117, 296 (1987). doi:10.1016/0021-9797(87)90195-0

    Article  CAS  Google Scholar 

  42. C.J. Brinker, G.W. Scherer, Sol–gel Science (Academic Press, London, 1990)

    Google Scholar 

  43. H.P. Lin, C.Y. Mou, Acc. Chem. Res. 35, 927 (2002). doi:10.1021/ar000074f

    Article  CAS  Google Scholar 

  44. X.G. Cui, W.C. Zin, W.J. Cho, C.S. Ha, Mater. Lett. 59, 2257 (2005). doi:10.1016/j.matlet.2005.02.073

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The project is financially supported by a Linkage Project grant (LP0562609) from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghe He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, T., Yao, X., Lu, M.G.Q. et al. Roles of trifluoroacetic acid, acetic acid and their salts in the synthesis of helical mesoporous materials. J Porous Mater 17, 123–131 (2010). https://doi.org/10.1007/s10934-009-9272-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9272-9

Keywords

Navigation