Skip to main content
Log in

Development of a simple aqueous solution based chemical method for synthesis of mesoporous γ-alumina powders with disordered pore structure

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A technically simple chemical method for the synthesis of mesoporous γ-alumina has been reported. Mesoporous γ-aluminas with different pore structure and surface area were synthesized by using aluminium nitrate as a source of aluminum. Supramolecular liquid crystalline phase of acid soap template synthesized via reaction of different carboxylic acids (stearic acid, oliec acid and lactic acid) with excess of triethanolamine (TEA) acts as a structure directing agent and water was used as solvent. Precursors were calcined at 550 °C in air for 2 h to obtain mesoporous alumina powders. Synthesized γ-alumina powders were characterized by using thermogravimetric analysis, X-ray diffraction, high resolution transmission electron microscope and N2 adsorption–desorption surface area and pore size analyzer. Pore size and ordering of pores were influenced by the chain length of carboxylic acids. Surface area of synthesized alumina powders varied from 214 to 376 m2/g and average pore diameter from 3.3 to 6.5 nm depending upon the chain length of the carboxylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.F. Baumann, A.E. Gash, S.C. Chinn, A.M. Sawvel, R.S. Maxwell, J.H. Satcher Jr, Chem. Mater. 17, 395 (2005). doi:10.1021/cm048800m

    Article  CAS  Google Scholar 

  2. Q. Liu, A. Wang, X. Wang, P. Gao, X. Wang, T. Zhang, Microporous. Mesoporous. Mater. 111, 323 (2008). doi:10.1016/j.micromeso.2007.08.007

    Article  CAS  Google Scholar 

  3. P. Kim, Y. Kim, H. Kim, I.K. Song, J. Yi, J. Mol. Catal. Chem. 219, 87 (2004). doi:10.1016/j.molcata.2004.04.038

    Article  CAS  Google Scholar 

  4. L.K. Hudson, C. Misra, K. Wefers, in Industrial Inorganic Chemicals and Products, vol. 1 (Wiley-VCH, Weinheim, 1999), pp. 26–83

  5. E. Lima, J. Valente, P. Bosch, V. Lara, J. Phys. Chem. B 109, 17435 (2005). doi:10.1021/jp0528865

    Article  CAS  Google Scholar 

  6. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992). doi:10.1038/359710a0

    Article  CAS  Google Scholar 

  7. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olsen, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 1083 (1992). doi:10.1021/ja00053a020

    Article  Google Scholar 

  8. J. Cejka, N. Zilkova, J. Rathousky, A. Zukal, Phys. Chem. Chem. Phys. 3, 5076 (2001). doi:10.1039/b105603b

    CAS  Google Scholar 

  9. Z. Hao, H. Lui, B. Guo, H. Li, J. Zhang, L. Gan, Z. Xu, L. Chen, Acta Physico-Chimica. Sin. 23, 289 (2007). doi:10.1016/S1872-1508(07)60021-7

    Article  CAS  Google Scholar 

  10. F. Vaudry, S. Khodabandeh, M.E. Davis, Chem. Mater. 8, 1451 (1996). doi:10.1021/cm9600337

    Article  CAS  Google Scholar 

  11. Q. Liu, A. Wang, X. Wang, T. Zhang, Chem. Mater. 18, 5153 (2006). doi:10.1021/cm0615727

    Article  CAS  Google Scholar 

  12. Y. Liu, D. Ma, X. Han, X. Bao, W. Frandsen, D. Wang, D. Su, Mater. Lett. 62, 1297 (2008). doi:10.1016/j.matlet.2007.08.067

    Article  CAS  Google Scholar 

  13. T. Seki, M. Onaka, J. Phys. Chem. B 110, 1240 (2006). doi:10.1021/jp055895m

    Article  CAS  Google Scholar 

  14. M. Yada, H. Hiyoshi, K. Ohe, M. Machida, T. Kijima, Inorg. Chem. 36, 5565 (1997). doi:10.1021/ic970292d

    Article  CAS  Google Scholar 

  15. M. Yada, H. Kitamura, M. Machida, T. Kijima, Langmuir 13, 5252 (1997). doi:10.1021/la9704462

    Article  CAS  Google Scholar 

  16. S. Cabrera, J.E. Haskouri, J. Alamo, A. Beltran, D. Beltran, S. Mendioroz, M.D. Marcos, P. Amoros, Adv. Mater. 11, 379 (1999). doi:10.1002/(SICI)1521-4095(199903)11:5<379::AID-ADMA379>3.0.CO;2-6

    Article  CAS  Google Scholar 

  17. K.J. Alvine, D. Pontoni, O.G. Shpyrko, P.S. Pershan, D.J. Cookson, K. Shin, T.P. Russell, M. Brunnbauer, F. Stellacci, O. Gang, Phys. Rev. B 73, 125412 (2006). doi:10.1103/PhysRevB.73.125412

    Article  CAS  Google Scholar 

  18. S.A. Bagshaw, E. Prouzet, T.J. Pinnavaia, Science 269, 1242 (1995). doi:10.1126/science.269.5228.1242

    Article  Google Scholar 

  19. S.A. Bagshaw, T.J. Pinnavaia, Angew. Chem. Int. Ed. Engl. 35, 1102 (1996). doi:10.1002/anie.199611021

    Article  CAS  Google Scholar 

  20. W. Zhang, T.J. Pinnavaia, Chem. Commun. (Camb) 1185 (1998). doi:10.1039/a708178b

  21. W. Deng, P. Bodart, M. Prusky, B.H. Shanks, Microporous. Mesoporous. Mater. 52, 169 (2002). doi:10.1016/S1387-1811(02)00315-3

    Article  CAS  Google Scholar 

  22. K. Niesz, P. Yang, G.A. Somorjai, Chem. Commun. (Camb) 1986 (2005). doi:10.1039/b419249d

  23. R.K. Pati, J.C. Ray, P. Pramanik, J. Am. Ceram. Soc. 84, 2849 (2001)

    Article  CAS  Google Scholar 

  24. JCPDS Card 21-1307

  25. JCPDS Card 10-0425

  26. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 611–613 (1985). doi:10.1351/pac198557040603

    Article  Google Scholar 

  27. C. Lesaint, G. Kleppa, D. Arla, W.R. Glomm, G. Øye, Microporous. Mesoporous. Mater. 119, 245–251 (2009). doi:10.1016/j.micromeso.2008.10.022

    Article  CAS  Google Scholar 

  28. S. Zhu, P.D.A. Pudney, M. Heppenstall-Butler, M.F. Butler, D. Ferdinando, M. Kirkland, J. Phys. Chem. B 111, 1016–1024 (2007). doi:10.1021/jp0659047

    Article  CAS  Google Scholar 

  29. M. Kruk, M. Jaroniec, A. Sayari, J. Phys. Chem. B 101, 583 (1997). doi:10.1021/jp962000k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. N. Ghosh gratefully acknowledges financial support from Department of Science and Technology, New Delhi, India (Project no: SR/S1/IC-39/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, B., Prasad, V.S. & Ghosh, N.N. Development of a simple aqueous solution based chemical method for synthesis of mesoporous γ-alumina powders with disordered pore structure. J Porous Mater 17, 115–121 (2010). https://doi.org/10.1007/s10934-009-9271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9271-x

Keywords

Navigation