Skip to main content
Log in

Template-free fabrication of porous zinc oxide hollow spheres and their enhanced photocatalytic performance

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous zinc oxide (ZnO) hollow spheres have been fabricated by calcination of a precursor complex in a furnace. The precursor was precipitated in a chemical solution at 80 °C. The field-emission scanning electron microscope and transmission electron microscope reveal the porous and hollow structure of the samples. The spherical hollow precursor is self-assembled in the solution under the coordination effect of citrate ions and the Kirkendall effect working together. The precursors can be converted to pure ZnO crystals by heating in a furnace above 300 °C. The Brunauer–Emmett–Teller (BET) specific surface area of this sample is 95.4 m2/g. The photocatalytic degradation of methyl blue solution test shows the ZnO hollow spheres have superior photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Caruso, R.A. Caruso, H. Mohwald, Science 282, 1111 (1998). doi:10.1126/science.282.5391.1111

    Article  CAS  Google Scholar 

  2. Q. Peng, Y. Dong, Y. Li, Angew. Int. Ed. 42, 3027 (2003)

    Article  CAS  Google Scholar 

  3. J. Bertling, J. Blomer, R. Kummel, Chem. Eng. Technol. 27, 8290 (2004). doi:10.1002/ceat.200406138

    Article  Google Scholar 

  4. D. Zhang, L. Qi, J. Ma, H. Cheng, Adv. Mater. 14, 1499 (2002). doi:10.1002/1521-4095(20021016)14:20<1499::AID-ADMA1499>3.0.CO;2-5

    Article  CAS  Google Scholar 

  5. D.Y. Wang, F. Caruso, Chem. Mater. 14, 1909 (2002). doi:10.1021/cm0211251

    Article  CAS  Google Scholar 

  6. S.L. Xiong, J.M. Shen, Q. Xie, Q. Gao, Q. Tang, Y.T. Qian, Adv. Funct. Mater. 15, 1787 (2005). doi:10.1002/adfm.200500069

    Article  CAS  Google Scholar 

  7. Y.Z. Li, T. Kunitake, S. Fujikawa, J. Phys. Chem. B 110, 13000 (2006). doi:10.1021/jp061979z

    Article  CAS  Google Scholar 

  8. X. Xu, S.A. Asher, J. Am. Chem. Soc. 126, 7940 (2004). doi:10.1021/ja049453k

    Article  CAS  Google Scholar 

  9. G. Zhu, S. Qiu, O. Terasaki, Y. Wei, J. Am. Chem. Soc. 123, 7723 (2001). doi:10.1021/ja0158758

    Article  CAS  Google Scholar 

  10. C.E. Fowler, D.D. Khushalani, S. Mann, Chem. Commun. (Camb.) 19, 2028 (2001). doi:10.1039/b104879c

    Article  Google Scholar 

  11. Z.X. Wang, M. Chen, L.M. Wu, Chem. Mater. 20, 3251 (2008). doi:10.1021/cm8001223

    Article  CAS  Google Scholar 

  12. L. Li, Y. Chu, Y. Liu, L. Dong, J. Phys. Chem. C 111, 2123 (2007). doi:10.1021/jp066664y

    Article  CAS  Google Scholar 

  13. Z.L. Wang, J. Phys. Condens. Matter. 16, 829 (2004). doi:10.1088/0953-8984/16/25/R01

    Article  CAS  Google Scholar 

  14. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001). doi:10.1126/science.1058120

    Article  CAS  Google Scholar 

  15. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, J. Am. Chem. Soc. 124, 12954 (2002). doi:10.1021/ja0279545

    Article  CAS  Google Scholar 

  16. F. Li, Y. Ding, P. Gao, X. Xin, Z.L. Wang, Angew. Chem. Int. Ed. 43, 5238 (2004). doi:10.1002/anie.200460783

    Article  CAS  Google Scholar 

  17. M. Wang, C.H. Ye, Y. Zhang, G.M. Hua, H.X. Wang, M.G. Kong, L.D. Zhang, J. Cryst. Growth 291, 334 (2006). doi:10.1016/j.jcrysgro.2006.03.033

    Article  CAS  Google Scholar 

  18. Z.Q. Li, Y. Xie, Y.J. Xiong, R. Zhang, New J. Chem. 27, 1518 (2003). doi:10.1039/b304787c

    Article  CAS  Google Scholar 

  19. Q. Peng, S. Xu, Z.B. Zhuang, X. Wang, Y.D. Li, Small 1, 216 (2005). doi:10.1002/smll.200400043

    Article  CAS  Google Scholar 

  20. J.X. Duan, X.T. Huang, E.K. Wang, H.H. Ai, Nanotechnology 17, 1786 (2006). doi:10.1088/0957-4484/17/6/040

    Article  CAS  Google Scholar 

  21. Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Science 304, 711 (2004). doi:10.1126/science.1096566

    Article  CAS  Google Scholar 

  22. A.D. Smigelskas, E.O. Kirkendall, Trans. AIME 171, 130 (1947)

    Google Scholar 

  23. C.E. Birchenall, J. Electrochem. Soc. 103, 619 (1956). doi:10.1149/1.2430174

    Article  CAS  Google Scholar 

  24. Q. Wu, X. Chen, P. Zhang, Y. Han, X. Chen, Y. Yan, S. Li, Cryst. Growth Des. 8, 3010 (2008). doi:10.1021/cg800126r

    Article  CAS  Google Scholar 

  25. D. Mondelaers, G. Vanhoyland, H. Van den Rul, J. D’Haen, M.K. Van Bael, J. Mullens, L.C. Van Poucke, Mater. Res. Bull. 37, 901 (2002). doi:10.1016/S0025-5408(02)00727-4

    Google Scholar 

Download references

Acknowledgment

This work was financial supported by the Education Department of Guangxi Province (200708MS130) and Guilin University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Cao, X., Wang, L. et al. Template-free fabrication of porous zinc oxide hollow spheres and their enhanced photocatalytic performance. J Porous Mater 17, 79–84 (2010). https://doi.org/10.1007/s10934-009-9266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9266-7

Keywords

Navigation