Skip to main content
Log in

Hydrothermal synthesis of gallium-substituted titanosilicate, ETGS-10

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

One of ETS-10 (Engelhard titanosilicate materials number 10) variants, ETGS-10 was successfully synthesized within limited Ga/Ti molar ratio of 0.1–0.3 using sodium silicate and titanium oxysulfate (TiOSO4) as silica and titanium sources. Like ETS-10 and ETAS-10, the (Na + K)/Na molar ratio has significant effect on the crystallinity and especially purity of final product. The 23 factorial methods suggest that the effect of alkalinity on the crystallinity is the most significant for the crystallization of pure ETGS-10. The activation energies calculated from kinetic study also suggest that once nuclei are formed, the transition and crystallization stages of ETGS-10 tend to proceed at a similar rate. Finally, 29Si- and 71Ga-MAS NMR studies clearly indicate that Ga has been isomorphously substituted for Si tetrahedral site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.M. Kuznichi, U.S. Patent 4,853,202, 1989

  2. S.M. Kuznichi, A.K.Thrush, Eur. Patent 0405978A1, 1990

  3. S.M. Kuznichi, U.S. Patent 4,994,119, 1991

  4. V. Valchev, J. Chem. Soc. Chem. Commun. 3, 261 (1994). doi:10.1039/c39940000261

    Article  Google Scholar 

  5. V. Valchev, S. Mintova, Zeolites 14, 697 (1997). doi:10.1016/0144-2449(94)90128-7

    Article  Google Scholar 

  6. T.K. Das, A.J. Chandwadkar, A.P. Budkar, A.A. Belhekar, S. Sivasanker, Microporous Mater. 4, 195 (1995). doi:10.1016/0927-6513(95)00005-T

    Article  CAS  Google Scholar 

  7. T.K. Das, A.J. Chandwadkar, A.P. Budkar, S. Sivasanker, Microporous Mater. 5, 401 (1996)

    Article  CAS  Google Scholar 

  8. J. Rocha, A. Ferreira, Z. Lin, M.W. Anderson, Microporous Mesoporous Mater. 23, 253 (1998). doi:10.1016/S1387-1811(98)00120-6

    Article  CAS  Google Scholar 

  9. W.J. Kim, S.D. Kim, H.S. Jung, D.T. Hayhurst, Microporous Mesoporous Mater. 56, 89 (2002). doi:10.1016/S1387-1811(02)00459-6

    Article  CAS  Google Scholar 

  10. M.W. Anderson, J. Rocha, Z. Lin, A. Philippou, I. Orion, A. Ferreira, Microporous Mater. 6, 195 (1996). doi:10.1016/0927-6513(95)00098-4

    Article  CAS  Google Scholar 

  11. C.C. Pavel, D. Vuono, P. De Luca, N. Bilba, J.B. Nagy, A. Nastro, Microporous Mesoporous Mater. 80, 263 (2005). doi:10.1016/j.micromeso.2004.12.021

    Article  CAS  Google Scholar 

  12. J.H. CHoi, S.D. Kim, S.H. Noh, S.J. Oh, W.J. Kim, Microporous Mesoporous Mater. 87, 163 (2006). doi:10.1016/j.micromeso.2005.06.043

    Article  CAS  Google Scholar 

  13. L. Lv, F. Su, X.S. Zhao, Microporous Mesoporous Mater. 101, 355 (2007). doi:10.1016/j.micromeso.2006.11.030

    Article  CAS  Google Scholar 

  14. S.D. Kim, S.H. Noh, K.H. Seong, W.J. Kim, Microporous Mesoporous Mater. 72, 185 (2004). doi:10.1016/j.micromeso.2004.04.024

    Article  CAS  Google Scholar 

  15. W.J. Kim, M.C. Lee, J.C. Yoo, D.T. Hayhurst, Microporous Mesoporous Mater. 41, 79 (2000). doi:10.1016/S1387-1811(00)00275-4

    Article  CAS  Google Scholar 

  16. S.D. Kim, S.H. Noh, Y.C. Kim, J.Y. Hwang, J.Y. Jung, S.C. Yi, W.J. Kim, J. Porous Mater. (2008). doi: 10.1007/s10934-008-9201-3

  17. S.H. Noh, S.D. Kim, Y.J. Chung, J.W. Park, D.K. Moon, D.T. Hayhurst, W.J. Kim, Microporous Mesoporous Mater. 88, 197 (2006). doi:10.1016/j.micromeso.2005.09.014

    Article  CAS  Google Scholar 

  18. S.D. Kim, S.H. Noh, W.J. Kim, Microporous Mesoporous Mater. 65, 165 (2003). doi:10.1016/j.micromeso.2003.08.002

    Article  CAS  Google Scholar 

  19. M.W. Anderson, A. Philippou, Z. Lin, A. Ferreira, J. Rocha, Angew. Chem. Int. Ed. Engl. 34, 1003 (1995). doi:10.1002/anie.199510031

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Carbon Dioxide Reduction & Sequestration R&D Center (CDRS), one of the 21st Century Frontier R&D Programs in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.D., Noh, S.H., Jung, J.Y. et al. Hydrothermal synthesis of gallium-substituted titanosilicate, ETGS-10. J Porous Mater 17, 49–56 (2010). https://doi.org/10.1007/s10934-009-9263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-009-9263-x

Keywords

Navigation