Skip to main content
Log in

Porous properties of mesoporous silicas from two silica sources (acid-leached kaolinite and Si-alkoxide)

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Two different mesoporous silicas (MesoPS) were synthesized by hydrothermal treatment in NaOH solution of two silica sources. One of these starting silicas was derived from selectively acid leached metakaolinite, and the other was from tetraethylorthosilicate (TEOS). The syntheses used a surfactant, cethyltrimethylammonium bromide (CTABr) and were carried out at different CTABr/Si, NaOH/Si and H2O/Si ratios. In the MesoPS from kaolinite, the specific surface areas (S BET) of the products were >1500 m2/g when prepared with 0.2 ≤ CTABr/Si ≤ 0.4, 0.3 ≤ NaOH/Si ≤ 0.6 and H2O/Si = 150. These S BET values are higher than those obtained from TEOS (ca. 1300 m2/g). The XRD patterns of these products contain a hexagonal (10-) peak with a lattice parameter a 0 = 4.2–5.2 nm in the MesoPS derived from kaolinite and a 0 = 4.0–4.6 nm in the products from TEOS. The regularity of the hexagonal structure is higher in the MesoPS derived from TEOS than from kaolinite. The pore size distributions of the products show a sharp peak at 2.8 nm in the MesoPS from kaolinite and at 2.4–2.5 nm in those from TEOS. The meso-structure is found to be formed during the stirring step of the synthesis and becomes more regular after hydrothermal treatment. The differences in the porous properties of the two MesoPSs from kaolinite and TEOS are attributed to differences in the dissolution rates and silica concentrations in the synthesis solutions. The 29Si MAS NMR spectra show a higher number of Q 3 (Si(OSi)3OH) units in the MesoPS from kaolinite and this is suggested to be related to the difference in their porous properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, Bull. Chem. Soc. Jpn. 63, 988 (1990). doi:10.1246/bcsj.63.988

    Article  CAS  Google Scholar 

  2. C.T. Kresge, M.E. Loenowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992). doi:10.1038/359710a0

    Article  CAS  Google Scholar 

  3. A. Sayari, Stud. Surf. Sci. Catal. 102, 1 (1996). doi:10.1016/S0167-2991(06)81398-4

    Article  CAS  Google Scholar 

  4. J.S. Beck, J.C. Vartuli, Curr. Opin. Solid State Mater. Sci. 1, 76 (1996). doi:10.1016/S1359-0286(96)80014-3

    Article  CAS  Google Scholar 

  5. A.E.C. Palmqvist, Curr. Opin. Colloid Interface Sci. 8, 145 (2003). doi:10.1016/S1359-0294(03)00020-7

    Article  CAS  Google Scholar 

  6. K. Okada, K.J.D. MacKenzie, in Nanomaterials from Research to Applications, ed. by H. Hosono, Y. Mishima, H.Takezoe, K.J.D. MacKenzie (Elsevier, Amsterdam, 2006), p. 349

  7. K. Kosuge, K. Shimada, A. Tsunashima, Chem. Mater. 42, 717 (1995)

    Google Scholar 

  8. T. Shinoda, M. Onaka, Y. Izumi, Chem. Lett. 24, 495 (1995). doi:10.1246/cl.1995.495

  9. K. Okada, H. Kawashima, Y. Saito, S. Hayashi, A. Yasumori, J. Mater. Chem. 5, 1241 (1995). doi:10.1039/jm9950501241

    Article  CAS  Google Scholar 

  10. K. Okada, A. Shimai, T. Takei, S. Hayashi, A. Yasumori, K.J.D. MacKenzie, Microporous Mesoporous Mater. 21, 289 (1998). doi:10.1016/S1387-1811(98)00015-8

    Article  CAS  Google Scholar 

  11. K. Okada, N. Nakazawa, Y. Kameshima, A. Yasumori, J. Temuujin, K.J.D. MacKenzie, M.E. Smith, Clays Clay Miner. 50, 623 (2002). doi:10.1346/000986002320679503

    Article  Google Scholar 

  12. K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumori, J. Colloid Interface Sci. 262, 179 (2003). doi:10.1016/S0021-9797(03)00107-3

    Article  CAS  Google Scholar 

  13. J. Temuujin, K. Okada, K.J.D. MacKenzie, Appl. Clay Sci. 22, 187 (2003). doi:10.1016/S0169-1317(02)00158-8

    Article  CAS  Google Scholar 

  14. K. Okada, N. Arimitsu, Y. Kameshima, A. Nakajima, K.J.D. MacKenzie, Appl. Clay Sci. 31, 185 (2006). doi:10.1016/j.clay.2005.10.014

    Article  CAS  Google Scholar 

  15. K. Okada, K.J.D. MacKenzie, Curr. Topics Colloid Interface Sci. 7, 1 (2006)

    CAS  Google Scholar 

  16. C.D. Madhusoodana, Y. Kameshima, A. Yasumori, K. Okada, Clay Sci. 11, 369 (2001)

    CAS  Google Scholar 

  17. C.D. Madhusoodana, Y. Kameshima, A. Nakajima, K. Okada, T. Kogure, K.J.D. MacKenzie, J. Colloid Interface Sci. 297, 724 (2006). doi:10.1016/j.jcis.2005.10.051

    Article  CAS  Google Scholar 

  18. S. Brunauer, P.H. Emmet, E. Teller, J. Am. Chem. Soc. 60, 309 (1938). doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  19. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951). doi:10.1021/ja01145a126

    Article  CAS  Google Scholar 

  20. Y. Cesteros, G.L. Haller, Microporous Mesoporous Mater. 43, 171 (2001). doi:10.1016/S1387-1811(00)00325-5

    Article  CAS  Google Scholar 

  21. W. Stumm, J.J. Morgan, Aquatic chemistry (Wiley-Interscience, London, 1981)

    Google Scholar 

  22. K.J.D. MacKenzie, M.E. Smith, Multinuclear solid-state NMR of inorganic materials, vol. 6 (Pergamon Materials Series, Pergamon, Oxford, 2002)

    Book  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. C.D. Madhusoodana of Ceramic Technological Laboratory, BHEL, India, for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, K., Yoshizaki, H., Kameshima, Y. et al. Porous properties of mesoporous silicas from two silica sources (acid-leached kaolinite and Si-alkoxide). J Porous Mater 17, 19–25 (2010). https://doi.org/10.1007/s10934-008-9260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9260-5

Keywords

Navigation