Skip to main content
Log in

Mechanical properties of porous methyl silsesquioxane and nanoclustering silica films using atomic force microscope

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Mechanical properties of porous methyl silsesquioxane samples with dielectric constant 2.4 and 2.0 and a recently developed nanoclustering silica film samples with dielectric constants 2.3 and 2.0 were evaluated using an atomic force microscope based nanoindentation. It was found that the Young’s modulus and the hardness decrease while the fracture toughness increases with a decrease in the dielectric constant in the same type of material. Moreover, the Young’s modulus and the hardness of the nanoclustering silica films were observed to be at least twice and fracture toughness values ~1.3–1.5 higher than those for methyl silsesquioxane films with similar dielectric constants. The high resolution topographic imaging capability of atomic force microscope was shown to be particularly useful in the measurement of cracks generated by the ultra-low indentation loads, and the evaluation of the fracture toughness of the nanoscale volumes of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Amakawa et al., in Interconnect (International Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA, 2007), p. 7

  2. K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, Z.S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003). doi:10.1063/1.1567460

    Article  CAS  Google Scholar 

  3. M. Morgen, E.T. Ryan, J.-H. Zhao, C. Hu, T. Cho, P.S. Ho, Annu. Rev. Mater. Sci. 30, 645 (2000). doi:10.1146/annurev.matsci.30.1.645

    Article  CAS  Google Scholar 

  4. X. Xiao, N. Hata, K. Yamada, T. Kikkawa, Rev. Sci. Instrum. 74, 4539 (2003). doi:10.1063/1.1611615

    Article  CAS  Google Scholar 

  5. A. Grill, Y. Iba, H. Kitada, N. Nishikawa, M. Miyajima, S. Fukuyama et al., in Advanced Metallization Conference (2001), p. 253

  6. T. Nakamura, A. Nakashima, in International Interconnect Technology Conference (Institute of Electrical and Electronic Engineers, San Francisco, CA, 2004), p. 175

  7. K. Ito, R.-S. Yu, K. Sato, K. Hirata, Y. Kobayashi, T. Kurihara et al., J. Appl. Phys. 98, 094307 (2005). doi:10.1063/1.2125121

    Article  Google Scholar 

  8. M. Ikeda, J. Nakahira, Y. Iba, H. Kitada, N. Nishikawa, M. Miyajima et al., in International Interconnect Technology Conference (Institute of Electrical and Electronic Engineers, San Fransisco, CA, 2003), p. 71

  9. H. Miyoshi, N. Hata, T. Kikkawa, Jpn. J. Appl. Phys. 44, 1166 (2005). doi:10.1143/JJAP.44.1166

    Article  CAS  Google Scholar 

  10. S. Garcia-Manyes, A.G. Güell, P. Gorostiza, F. Sanza, J. Chem. Phys. 123, 114711 (2005). doi:10.1063/1.2035094

    Article  Google Scholar 

  11. A.V. Kulkarni, B. Bhushan, Thin Solid Films 290–291, 206 (1996). doi:10.1016/S0040-6090(96)08974-2

    Article  Google Scholar 

  12. M. Petzold, J. Landgraf, M. Futing, J.M. Olaf, Thin Solid Films 264, 153 (1995). doi:10.1016/0040-6090(95)05855-9

    Article  CAS  Google Scholar 

  13. S. Chowdhury, M.T. Laugier, Nanotechnology 15, 1017 (2004). doi:10.1088/0957-4484/15/8/027

    Article  Google Scholar 

  14. M.R. VanLandingham, T.F. Juliano, M.J. Hagon, Meas. Sci. Technol. 16, 2173 (2005). doi:10.1088/0957-0233/16/11/007

    Article  CAS  Google Scholar 

  15. J. Domke, M. Radmacher, Langmuir 14, 3320 (1998). doi:10.1021/la9713006

    Article  CAS  Google Scholar 

  16. D.-L. Liu, T.-M. Lu, G.-C. Wang, R.C. Picu, Appl. Phys. Lett. 85, 3053 (2004). doi:10.1063/1.1805710

    Article  CAS  Google Scholar 

  17. M.R. Baklanov, K.P. Mogilnikov, V.G. Polovinkin, F.N. Dultsev, J. Vac. Sci. Technol. B 18, 1385 (2000). doi:10.1116/1.591390

    Article  CAS  Google Scholar 

  18. J.L. Hutter, J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993). doi:10.1063/1.1143970

    Article  CAS  Google Scholar 

  19. C. Gaire, D.-X. Ye, F. Tang, R.C. Picu, G.-C. Wang, T.-M. Lu, J. Nanosci. Nanotech. 5, 1893 (2005)

    Article  CAS  Google Scholar 

  20. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992). doi:10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  21. M. Martin, T. Troyon, J. Mater. Res. 17, 2227 (2002). doi:10.1557/JMR.2002.0328

    Article  CAS  Google Scholar 

  22. M. Hakamada, M. Mabuchi, Scr. Mater. 56, 1003 (2007). doi:10.1016/j.scriptamat.2007.01.046

    Article  CAS  Google Scholar 

  23. R.E. Miller, V.B. Shenoy, Nanotechnology 11, 139 (2000). doi:10.1088/0957-4484/11/3/301

    Article  CAS  Google Scholar 

  24. L.H. He, Z.R. Li, Int. J. Solids Struct. 43, 6208 (2006). doi:10.1016/j.ijsolstr.2005.05.041

    Article  Google Scholar 

  25. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004). doi:10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  26. R. Saha, W.D. Nix, Acta Mater. 50, 23 (2002). doi:10.1016/S1359-6454(01)00328-7

    Article  CAS  Google Scholar 

  27. R.B. King, Int. J. Solids Struct. 23, 1657 (1987). doi:10.1016/0020-7683(87)90116-8

    Article  Google Scholar 

  28. A.M. Padovani, L. Rhodes, L. Riester, G. Lohman, B. Tsuie, J. Conner et al., Electrochem. Solid-State Lett. 4, F25 (2001). doi:10.1149/1.1403215

    Article  CAS  Google Scholar 

  29. G. Xu, J. He, E. Andideh, J. Bielefeld, T. Scherban, in IEEE International Interconnect Technology Conference (Piscataway, NJ, San Francisco, CA, 2002), p. 57

  30. X. Huang, A.A. Pelegri, J. Eng. Mater. Technol. 125, 361 (2003). doi:10.1115/1.1605109

    Article  CAS  Google Scholar 

  31. Z. Li, M.C. Johnson, M. Sun, E.T. Ryan, D.J. Earl, W. Maichen et al., Angew. Chem. Int. Ed. 45, 6329 (2006). doi:10.1002/anie.200602036

    Article  CAS  Google Scholar 

  32. D.B. Marshall, B.R. Lawn, J. Am. Ceram. Soc. 60, 87 (1977). doi:10.1111/j.1151-2916.1977.tb16106.x

    Article  Google Scholar 

  33. R. Tandon, T.E. Buchheit, J. Am. Ceram. Soc. 90, 502 (2007). doi:10.1111/j.1551-2916.2006.01389.x

    Article  CAS  Google Scholar 

  34. B.R. Lawn, A.G. Evans, D.B. Marshall, J. Am. Ceram. Soc. 63, 573 (1980)

    Google Scholar 

  35. G.M. Pharr, D.S. Harding, W.C. Oliver, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, ed. by M. Natasi, D.M. Parkin, H. Gleiter (Kluwer Academic, Dordrecht, Netherlands, 1993), p. 449

    Google Scholar 

  36. X. Li, B. Bhushan, Thin Solid Films 315, 214 (1998). doi:10.1016/S0040-6090(97)00788-8

    Article  CAS  Google Scholar 

  37. Z. Xia, L. Riester, B.W. Sheldon, W.A. Curtin, J. Liang, A. Yin et al., Rev. Adv. Mater. Sci. 6, 131 (2004)

    CAS  Google Scholar 

  38. D.J. Morris, A.M. Vodnick, R.F. Cook, Int. J. Fract. 136, 265 (2005). doi:10.1007/s10704-005-6033-x

    Article  CAS  Google Scholar 

  39. G.M. Pharr, Mater. Sci. Eng. A 253, 151 (1998). doi:10.1016/S0921-5093(98)00724-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF under Grant No. 0324492. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. We thank G. Spencer from Freescale Motorola and Sammy Saito from CCIC for providing MSQ and NCS samples, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaire, C., Ou, Y., Arao, H. et al. Mechanical properties of porous methyl silsesquioxane and nanoclustering silica films using atomic force microscope. J Porous Mater 17, 11–18 (2010). https://doi.org/10.1007/s10934-008-9259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9259-y

Keywords

Navigation