Skip to main content
Log in

Immobilization of proteolytic enzyme on highly porous activated carbon derived from rice bran

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Highly porous activated carbon (HPAC) was used as carrier matrix for immobilization of acid protease (AP). Immobilization of acid protease on mesoporous activated carbon (AP-HPAC) performs as best enzyme carrier. At pH 6.0, 250 mg acid protease g−1 HPAC was immobilized. The optimum temperature for both free and immobilized AP activities were 50 °C. After incubation at 50 °C, the immobilized AP maintained about 50% of its initial activity, while the free enzyme was completely inactivated. When testing the reusability of AP-HPAC combination immobilized system, a significant catalytic efficiency was maintained along more than five consecutive reaction cycles. The highly porous nature of the carbon permits significant higher loadings of enzyme, which results in a higher enzyme-support strength and increased stability. The changes in the AP, HPAC and AP-HPAC were confirmed by Fourier Transform Infrared spectroscopy (FT-IR). Furthermore, scanning electron microscopy (SEM) allowed us to observe that the morphology of the surface of HPAC and the AP-HPAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.A. Jarzebski, S.S. Katarzyna, B. Jolanta, M.B. Julita, Cat. Today 124, 2 (2007)

    Article  CAS  Google Scholar 

  2. N.E. Kotel’nikova, S.A. Mikhailova, E.N. Vlasova, Russian J. Appl. Chem. 80, 322 (2007)

    Article  Google Scholar 

  3. G.A. Vikhoreva, K.P. Khomyakov, I.Yu Sakharov, L.S. Galbraikh, Fibre Chem. 27, 337 (1996)

    Article  Google Scholar 

  4. A.R. Sheldon, Adv. Synth. Catal. 349, 1289 (2007)

    Article  CAS  Google Scholar 

  5. B. Zhao, B. Shi, R. Ma, Eng. Life Sci. 5, 436 (2005)

    Article  CAS  Google Scholar 

  6. A.S. Rani, M.L.D. Das, S. Satyanarayana, J. Mol. Catal. B 10, 471 (2000)

    Article  CAS  Google Scholar 

  7. L. Furegon, A.D.B. Peruffo, A. Curioni, Proc. Biochem. 32, 113 (1996)

    Article  Google Scholar 

  8. B. Al-Duri, Y.P. Yong, J. Biochem. Eng. 4, 207 (2000)

    Article  CAS  Google Scholar 

  9. N. Durán, M.A. Rosa, A. D’annibale, L. Gianfreda, Enzyme Microb. Technol. 31, 907 (2002)

    Article  Google Scholar 

  10. K. Moeschel, M. Nouaimi, C. Steinbrenner, H. Bisswanger, Biotech. Bioeng. 82, 190 (2003)

    Article  CAS  Google Scholar 

  11. H.J. Chae, M.J. In, E.Y. Kim, Appl. Biochem. Biotech. 73, 195 (1998)

    Article  CAS  Google Scholar 

  12. C.J.S.M. Silva, Q. Zhang, J. Shen, A.C. Paulo, Enzyme Microb. Technol. 39, 634 (2006)

    Article  CAS  Google Scholar 

  13. P.F. Yang, C.K. Lee, Biochem. Eng. J. 37, 108 (2007)

    Article  CAS  Google Scholar 

  14. A.X. Yan, X.W. Li, Y.H. Ye, Appl. Biochem. Biotech. 101, 113 (2002)

    Article  CAS  Google Scholar 

  15. K.L. Lie, H.L.C. Lina, T.W. Keng, Clin. Biochem. 35, 181 (2002)

    Article  Google Scholar 

  16. X.S. Zhao, X.Y. Bao, W. Guo, F.Y. Lee, Mat. Today 9, 32 (2006)

    Article  CAS  Google Scholar 

  17. J.S. Macedo, L. Otubo, O.P. Ferreira, I.F. Gimenez, I.O. Mazali, L.S. Barreto, Micro. Meso. Mat. 107, 276 (2008)

    Article  CAS  Google Scholar 

  18. D. Spelzini, B. Farruggia, G. Pico, J. Chromatograph. B 821, 60 (2005)

    Article  CAS  Google Scholar 

  19. S.J. Gregg, K.S.W. Sing, Academic Press, London (1982)

  20. A. Ganesh Kumar, N. Nagesh, T.G. Prabhakar, G. Sekaran, Biores. Technol. 99, 2364 (2008)

    Article  Google Scholar 

  21. L. Blasi, L. Longo, G. Vasapollo, R. Cingolani, R. Rinaldi, T. Rizzello, R. Acierno, M. Maffia, Enzyme Microb. Technol. 36, 818 (2005)

    Article  CAS  Google Scholar 

  22. Y. Chang, Y.H. Park, C.R. Park, Carbon 39, 559 (2001)

    Article  Google Scholar 

  23. L. John Kennedy, J. Judith Vijaya, G. Sekaran, Ind. Eng. Chem. Res. 43, 1832 (2004)

    Article  Google Scholar 

  24. S. Jang, D. Kim, J. Choi, K. Row, W. Ahn, J. Porous. Mater. 13, 385 (2006)

    Article  CAS  Google Scholar 

  25. L. Zhongli, B. Shuxian, Enzyme Microb.Technol. 40, 1442 (2007)

    Article  Google Scholar 

  26. Y.F. Li, F.Y. Jia, J.R. Li, G. Liu, Y.Z. Li, Biotechnol. Assl. Biochem. 33, 29 (2001)

    Article  CAS  Google Scholar 

  27. H. Lin, H. Wang, C. Xue, M. Ye, Enz. Microb. Technol. 31, 588 (2002)

    Article  CAS  Google Scholar 

  28. B. Paolo, D.A. Alessandro, G. Carlo, G. Patrizia, N.P. Ana Sofia, J. Mol. Cat. B Enzymatic. 41, 61 (2006)

    Article  Google Scholar 

  29. A. Kilinç, S. Önal, A. Telefoncu, Turk. J. Chem. 26, 311 (2002)

    Google Scholar 

  30. L. John Kennedy, J. Judith Vijaya, K. Kayalvizhi, G. Sekaran, Chem. Eng. J. 132, 279 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author A. Ganesh Kumar is thankful to Council of Scientific and Industrial Research (CSIR), Central Leather Research Institute (CLRI), Sathyabama University, India, for awarding a Research Fellowship and providing the facilities needed to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh Kumar, A., Swarnalatha, S., Kamatchi, P. et al. Immobilization of proteolytic enzyme on highly porous activated carbon derived from rice bran. J Porous Mater 16, 439–445 (2009). https://doi.org/10.1007/s10934-008-9216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9216-9

Keywords

Navigation