Skip to main content
Log in

Membrane potential and fixed-charge density across TiPO4–VPO4 composite membranes for uni-univalent electrolyte solution

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The TVP composite membranes were prepared by sol–gel process, and the membrane potential has been measured for characterizing the ion-transport phenomena across a charged membrane using electrolytes (KCl, NaCl and LiCl). The membrane potential offered by the electrolytes is in the order of LiCl > NaCl > KCl, and the membrane is found to be cation-selective. The results have been used to estimate fixed-charge density, distribution coefficient, charge effectiveness and transport properties of electrolytes of this membrane. The fixed-charge density is the most important parameter, governing transport phenomena in membranes. It is estimated by the TMS method; it is dependent on the feed composition due to the prefential adsorption of some ions. The results indicate that the applied pressure is also an important variable to modify the charge density and, in turn, the performance of membrane. The order of charge effectiveness of the electrolytes in membrane depends on the ionic radii of the counter-ions. The experimental results for membrane potential are quite consistent with the theoretical prediction. The morphology of the membrane surface is studied by scanning electron micrographs (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AR:

Analytical reagent

C 1, C 2 :

Concentrations of electrolyte solution on either side of the membrane (mol/L)

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{C}_{{1 + }} \) :

Cation concentration in membrane phase 1 (mol/L)

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{C}_{{2 + }} \) :

Cation concentration in membrane phase 2 (mol/L)

C i :

ith ion concentration of external solution (mol/L)

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{C}_{i} \) :

ith ion concentration in membrane phase (mol/L)

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{D} \) :

Charge density in membrane (eq/L)

F :

Faraday constant (C/mol)

K ± :

Distribution coefficient of ions

80–160:

Pressure (MPa)

q :

Charge effectiveness of the membrane

R :

Gas constant (J/K/mol)

SCE:

Saturated calomel electrode

SEM:

Scanning electron microscopy

TMS:

Teorell, Meyer and Sievers

t + :

Transport number of cation

t :

Transport number of anion

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{u} \) :

Mobility of cations in the membrane phase (m2/v/s)

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{U} \) :

\( {{\left( {\ifmmode\expandafter\bar\else\expandafter\=\fi{u} - \ifmmode\expandafter\bar\else\expandafter\=\fi{v}} \right)}} \mathord{\left/ {\vphantom {{{\left( {\ifmmode\expandafter\bar\else\expandafter\=\fi{u} - \ifmmode\expandafter\bar\else\expandafter\=\fi{v}} \right)}} {{\left( {\ifmmode\expandafter\bar\else\expandafter\=\fi{u} + \ifmmode\expandafter\bar\else\expandafter\=\fi{v}} \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\ifmmode\expandafter\bar\else\expandafter\=\fi{u} + \ifmmode\expandafter\bar\else\expandafter\=\fi{v}} \right)}} \)

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{v} \) :

Mobility of anions in the membrane phase (m2/v/s)

V k :

Valency of cation

V x :

Valency of fixed-charge group

\( {\gamma }\ifmmode{'}\else$'$\fi_{ \pm } ,{\gamma }\ifmmode{''}\else$''$\fi_{ \pm } \) :

Mean ionic activity coefficients

\( \ifmmode\expandafter\bar\else\expandafter\=\fi{\omega } \) :

Mobility ratio

ΔΨm :

Observed membrane potential (mV)

\( \Updelta \bar{\psi }_{{\text{m}}} \) :

Theoretical membrane potential (mV)

ΔΨDon :

Donnan potential (mV)

\( \Updelta \bar{\psi }_{{{\text{diff}}}} \) :

Diffusion potential (mV)

References

  1. C. Serre, G. Ferey, J. Mater. Chem. 9, 579 (1999)

    Article  CAS  Google Scholar 

  2. E. Bordes, Catal. Today 3, 163 (1988)

    Article  CAS  Google Scholar 

  3. S.T. Wilson, M.M. Lok, C.A. Messina, T.R. Cannan, E.M. Flanigen, J. Am. Chem. Soc. 104, 1146 (1982)

    Article  CAS  Google Scholar 

  4. A. Bhaumik, Proc. Indian Acad. Sci. 114(4), 451 (2002)

    Article  CAS  Google Scholar 

  5. C. Brosseu, P. Queffelec, P. Talbot, J. Appl. Phys. 89, 4532 (2001)

    Article  CAS  Google Scholar 

  6. Y.S. Lin, A.J. Burggraaf, J. Am. Ceram. Soc. 74, 219 (1991)

    Article  CAS  Google Scholar 

  7. A. Larbot, J.P. Fabre, C. Guizard, L. Cot, J. Mater. Sci. 39, 203 (1988)

    CAS  Google Scholar 

  8. J. Ying, C. Wan, P. He, Sens. Actuators B 62, 165 (2000)

    Article  Google Scholar 

  9. E. Traversa, G. Gnappi, A.M. Gusmano, Sens. Actuators B 31, 59 (1996)

    Article  Google Scholar 

  10. T. Nitta, Z. Terada, S. Hayakawa, J. Am. Ceram. Soc. 63, 295 (1980)

    Article  CAS  Google Scholar 

  11. F. Helfferich, Ion exchange (McGraw-Hill, New York, 1962)

    Google Scholar 

  12. N. Lakshminarayanaiah, Transport phenomena in membranes (Academic Press, New York, 1969)

    Google Scholar 

  13. N. Lakshminarayanaiah, Equations of membrane biophysica (Academic Press, Orlando, FL, 1984)

    Google Scholar 

  14. A. Elmidaoui, J. Molenat, C. Gavach, J. Membr. Sci. 55, 79 (1991)

    Article  CAS  Google Scholar 

  15. M. Higa, A. Tanioka, K. Miyasaka, J. Membr. Sci. 64, 255 (1991)

    Article  CAS  Google Scholar 

  16. J. Gastilla, M.T.G. Hernandez, A. Hayas, J. Horno, J. Membr. Sci. 116, 107 (1996)

    Article  Google Scholar 

  17. T. Teorell, Proc. Soc. Exp. Biol. 33, 282 (1935)

    CAS  Google Scholar 

  18. T. Teorell, Proc. Natl. Acad. Cad. Sci. USA 21, 152 (1935)

    Article  CAS  Google Scholar 

  19. K.H. Meyer, J.F. Sievers, Helv. Chim. Acta 19, 649, 665, 987 (1936)

    Google Scholar 

  20. M.N. Beg, F.A. Siddiqi, S.P. Singh, P. Prakash, V. Gupta, Electrochem. Acta 24, 85 (1979)

    Article  CAS  Google Scholar 

  21. M.N. Beg, F.A. Siddiqi, R. Shyam, I. Altaf, J. Electronal. Chem. 89, 141 (1978)

    Article  CAS  Google Scholar 

  22. U. Razdan, S.V. Joshi, V.J. Shah, Curr. Sci. 85(6), 761 (2003)

    CAS  Google Scholar 

  23. L.R.B. Santos, S.H. Pulcinelli, C.V. Santilli, J. Sol. Gel. Sci. Technol. 8, 477 (1997)

    CAS  Google Scholar 

  24. R.J. Wakeman, J.L. Henshall, S.G. Ng, Trans. IChemE 74(A), 329 (1996)

    CAS  Google Scholar 

  25. L. Huang, Z. Wang, J. Sun, L.M.Q. Zhili, Y. Yan, D.U. Zhao, J. Am. Chem. Soc. 122, 3530 (2000)

    Article  CAS  Google Scholar 

  26. H. Izutsu, F. Mizukami, P.K. Nair, Y. Kiyozumi, K.D. Mae, J. Mater. Chem. 7(5), 767 (1997)

    Article  CAS  Google Scholar 

  27. G. Eisenman, Membrane transport and metabolism, ed by A. Kleinser, A. Koty (Academic Press, New York, 1961), p. 163

  28. V.M. Barragan, C. Rueda, C. Ruiz-Baura, J. Colloid Interface Sci. 172, 361 (1995)

    Article  CAS  Google Scholar 

  29. F.A. Siddiqi, I.R. Khan, S.K. Saksena, M.A. Ahshan, J. Membr. Sci. 2, 245 (1977)

    Article  CAS  Google Scholar 

  30. K. Singh, A.K. Tiwari, Proc. Indian Natl. Sci. Acad. 70A(3), 477 (2004)

    Google Scholar 

  31. R. Winter, C. Czeslik, Z. Kristalloger. 215, 454 (2000)

    Article  CAS  Google Scholar 

  32. A. Tanioka, H. Matsumoto, R. Yamamoto, J. Sci. Tech. Adv. Mater. 5, 461 (2004)

    Article  CAS  Google Scholar 

  33. K. Singh, A.K. Tiwari, J. Colloid Interface Sci. 210, 241 (1999)

    Article  CAS  Google Scholar 

  34. J.-H. Tay, J. Liu, D.D. Sun, Water Res. 36, 585 (2000)

    Article  Google Scholar 

  35. H. Matsumoto, A. Tanioka, T.J. Murata, M. Higa, K. Horiuchi, J. Phys. Chem. B 102, 5011 (1998)

    Article  CAS  Google Scholar 

  36. T.J. Chou, A. Tanioka, J. Colloid Interface Sci. 212, 293 (1999)

    Article  CAS  Google Scholar 

  37. W. Bowen, A. Mohammad, N. Hilal, J. Membr. Sci. 126, 91 (1997)

    Article  CAS  Google Scholar 

  38. X. Wang, T. Tsuru, M. Togoh, S. Nakao, S. Kimura, J. Chem. Eng. Jpn. 28(2), 186 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the chairman, Department of Chemistry, for providing necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiuddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabeen, F., Rafiuddin Membrane potential and fixed-charge density across TiPO4–VPO4 composite membranes for uni-univalent electrolyte solution. J Porous Mater 16, 257–265 (2009). https://doi.org/10.1007/s10934-008-9195-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-008-9195-x

Keywords

Navigation