Skip to main content

Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes

Abstract

Three enzymes, α-amylase, glucoamylase and invertase, were immobilized on acid activated montmorillonite K 10 via two independent techniques, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, N2 adsorption measurements and 27Al MAS-NMR spectroscopy. The XRD patterns showed that all enzymes were intercalated into the clay inter-layer space. The entire protein backbone was situated at the periphery of the clay matrix. Intercalation occurred through the side chains of the amino acid residues. A decrease in surface area and pore volume upon immobilization supported this observation. The extent of intercalation was greater for the covalently bound systems. NMR data showed that tetrahedral Al species were involved during enzyme adsorption whereas octahedral Al was involved during covalent binding. The immobilized enzymes demonstrated enhanced storage stability. While the free enzymes lost all activity within a period of 10 days, the immobilized forms retained appreciable activity even after 30 days of storage. Reusability also improved upon immobilization. Here again, covalently bound enzymes exhibited better characteristics than their adsorbed counterparts. The immobilized enzymes could be successfully used continuously in the packed bed reactor for about 96 hours without much loss in activity. Immobilized glucoamylase demonstrated the best results.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T.J. Pinnavaia, Science 220, 365 (1983)

    Article  CAS  Google Scholar 

  2. 2.

    P. Laszlo, Science 23, 235 (1987)

    Google Scholar 

  3. 3.

    F. Arena, R. Dario, A. Parmaliana, Appl. Catal. A Gen. 170, 127 (1998)

    Article  CAS  Google Scholar 

  4. 4.

    W. Hartmeier, Immobilized biocatalysts—an introduction (Springer-Verlag, Berlin, 1988)

    Google Scholar 

  5. 5.

    S. Varavinit, N. Chaokasem, S. Shabsngob, World J. Microbiol. Biotechnol. 17, 721 (2001)

    Article  CAS  Google Scholar 

  6. 6.

    J.-T. Oh, J.-H. Kim, Enzyme Microb. Technol. 27, 356 (2000)

    Article  CAS  Google Scholar 

  7. 7.

    T. Bahar, S.S. Celebi, Enzyme Microb. Technol. 23, 301 (1998)

    Article  CAS  Google Scholar 

  8. 8.

    M.Y. Arica, N.G. Alaeddinoglu, V. Hasirci, Enzyme Microb. Technol. 22, 152 (1998)

    Article  CAS  Google Scholar 

  9. 9.

    H. Tumturk, S. Aksoy, N. Hasirci, Food Chem. 68, 259 (2000)

    Article  CAS  Google Scholar 

  10. 10.

    S. Akgol, Y. Kacar, A. Denizli, M.Y. Arica, Food Chem. 74 281 (2001)

    Article  CAS  Google Scholar 

  11. 11.

    T. Bahar, A. Tuncel, J. Appl. Polym. Sci. 83, 1268 (2002)

    Article  CAS  Google Scholar 

  12. 12.

    A. Tanioka, Y. Yokoyama, K. Miyasaka, J. Colloid Interfacial Sci. 200, 185 (1998)

    Article  CAS  Google Scholar 

  13. 13.

    A. Gurcel, S. Alkan, L. Toppare, Y. Yagci, React. Funct. Polym. 57, 57 (2003)

    Article  CAS  Google Scholar 

  14. 14.

    S. Isik, S. Alkan, L. Toppare, I. Cianga, Y. Yagci, Eur. Polym. J. 39, 2375 (2003)

    Article  CAS  Google Scholar 

  15. 15.

    Y. Chen, E.T. Kang, K.G. Neoh, K.L. Tan, Eur. Polym. J. 36, 2095 (2000)

    Article  CAS  Google Scholar 

  16. 16.

    A.A.A. DeQueiroz, M. Vitolo, R.C. DeOliveira, O.Z. Higa, Radiat. Phys. Chem. 47, 873 (1996)

    Article  Google Scholar 

  17. 17.

    H.M. Mody, K.H. Mody, O.P. Mairh, R.V. Jasra, Indian J. Chem. 38A, 1200 (1999)

    CAS  Google Scholar 

  18. 18.

    M.I.G. Siso, M. Graber, J.-S. Condoret, D. Combes, J. Chem. Technol. Biotechnol. 48, 185 (1990)

    CAS  Article  Google Scholar 

  19. 19.

    A.A.S. Sinegani, G. Emtiazi, H. Shariatmadari, J. Colloid Interface Sci. 290, 39 (2005)

    Article  CAS  Google Scholar 

  20. 20.

    M.B.A. Rahman, S.M. Tajudin, M.Z. Hussein, R.N.Z.R.A. Rahman, A.B. Salleh, M. Basri, Appl. Clay Sci. 29, 111 (2005)

    Article  CAS  Google Scholar 

  21. 21.

    I.E. deFuentes, C.A. Viseras, D. Ubiali, M. Terreni, A.R. Alcantara, J. Mol. Catal. B Enzym. 11, 657 (2001)

    Article  CAS  Google Scholar 

  22. 22.

    M.S. Carrasco, J.C. Rad, S. Gonzalez-Carcedo, Bioresour. Technol. 51, 175 (1995)

    Article  CAS  Google Scholar 

  23. 23.

    A. Naidja, P.M. Huang, J. Mol. Catal. A Chem. 106, 255 (1996)

    Article  CAS  Google Scholar 

  24. 24.

    X. Tang, Y.-F. Shen, S.L. Suib, R.W. Coughlin, R. Vinopal, Microporous Mater. 2, 65 (1993)

    Article  CAS  Google Scholar 

  25. 25.

    A. Naidja, P.M. Huang, J.-M. Bollag, J. Mol. Catal. A Chem. 115, 305 (1997)

    Article  CAS  Google Scholar 

  26. 26.

    Y.-H. Ju, W.-J. Chen, C.-K. Lee, Enzym. Microb. Technol. 17, 685 (1995)

    Article  CAS  Google Scholar 

  27. 27.

    G. Bayramoglu, S. Akgol, A. Bulut, A. Denizli, M.Y. Arica, Biochem. Eng. J. 14, 117 (2003)

    Article  CAS  Google Scholar 

  28. 28.

    M.Y. Arica, S. Senel, N.G. Alaeddinoglu, S. Patir, A.␣Denizli, J. Appl. Polym. Sci. 75, 1685 (2000)

    Article  CAS  Google Scholar 

  29. 29.

    M.L. Occelli, A. Aurox, G.J. Ray, Microporous Mesoporous Mater. 39, 43 (2000)

    Article  CAS  Google Scholar 

  30. 30.

    D. Plee, F. Borg, L. Gatineau, J.J. Fripiat, J. Am. Chem. Soc. 107, 2362 (1985)

    Article  CAS  Google Scholar 

  31. 31.

    I. Palinko, A. Molnar, J.B. Nagy, J.C. Bertnand, K. Lazar, J.␣Valyon, I. Kiricsi, J. Chem. Soc. Faraday Trans. 938, 1591 (1997)

    Article  Google Scholar 

  32. 32.

    J. Kotzelski, E. Staude, J. Memb. Sci. 114, 201 (1996)

    Article  CAS  Google Scholar 

  33. 33.

    H. Ooshima, M. Sakimoto, Y. Harano, Biotechnol. Bioeng. 22, 2155 (1980)

    Article  Google Scholar 

  34. 34.

    O.H. Lowry, N.J. Rosebrough, A.L. Faar, R.J.J. Randall, J.␣Biol. Chem. 193, 265 (1951)

    CAS  Google Scholar 

  35. 35.

    S. Aksoy, H. Tumturk, N. Hasirci, J. Biotechnol. 60, 37 (1998)

    Article  CAS  Google Scholar 

  36. 36.

    S. Ahmad, A. Anwar, M. Saleemuddin, Bioresour. Technol. 79, 121 (2001)

    Article  CAS  Google Scholar 

  37. 37.

    J. Bryjak, Biochem. Eng. J. 16, 347 (2003)

    Article  CAS  Google Scholar 

  38. 38.

    Y. Ge, Y. Wang, H. Zhou, S. Wang, Y. Tong, W. Li, J.␣Biotechnol. 67, 33 (1999)

    Article  CAS  Google Scholar 

  39. 39.

    A. Cirpan, S. Alkan, L. Toppare, Y. Hepuzer, Y Yagci, Bioelectrochemistry 59, 29 (2003)

    Article  CAS  Google Scholar 

  40. 40.

    D. Tanyolac, B.I. Yuruksoy, A.R. Ozdural, Biochem. Eng. J.␣2, 179 (1998)

    Article  CAS  Google Scholar 

  41. 41.

    L.F. Chen, G.T. Tsao, Biotechnol. Bioeng. 19, 1463 (1977)

    Article  CAS  Google Scholar 

  42. 42.

    Z. Sasvari, B. Asboth, Biotechnol. Bioeng. 63, 459 (1999)

    Article  CAS  Google Scholar 

  43. 43.

    A.S. Rani, M.L.M. Das, S. Satyanarayana, J. Mol. Catal. B␣Enzym. 10, 471 (2000)

    Article  CAS  Google Scholar 

  44. 44.

    W. Jia, E. Segal, D. Kornemandel, Y. Lamhot, M. Narkis, A.␣Siegmann, Synth. Met. 128, 115 (2002)

    Article  CAS  Google Scholar 

  45. 45.

    D. Lee, K. Char, Polym. Degrad. Stab. 75, 555 (2002)

    Article  CAS  Google Scholar 

  46. 46.

    R.D. Gougeon, M. Soulard, M. Reinholdt, J. Miehe-Brendle, J.M. Chezeau, R. LeDred, R. Marchal, P. Jeandet, Eur. J.␣Inorg. Chem. 1366 (2003)

  47. 47.

    R. Jelinek, B.F. Chmelka, A. Stein, G.A. Ozin, J. Phys. Chem. 96, 6744 (1992)

    Article  CAS  Google Scholar 

  48. 48.

    Q. Liu, D.A. Spears, Q. Liu, Appl. Clay Sci. 19, 89 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Faculty, SIF, IISc Bangalore for the NMR measurements. Financial support from CSIR New Delhi is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sankaran Sugunan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sanjay, G., Sugunan, S. Acid activated montmorillonite: an efficient immobilization support for improving reusability, storage stability and operational stability of enzymes. J Porous Mater 15, 359–367 (2008). https://doi.org/10.1007/s10934-006-9089-8

Download citation

Keywords

  • α-Amylase
  • Glucoamylase
  • Invertase
  • Immobilization
  • Montmorillonite
  • Adsorption
  • Covalent binding