Journal of Porous Materials

, Volume 14, Issue 1, pp 61–69 | Cite as

Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms

  • Dusan Losic
  • Rachel J. Pillar
  • Thorsten Dilger
  • James G. Mitchell
  • Nicolas H. Voelcker


The porous silica nanostructure of two marine, centric diatoms, Coscinodiscus sp. and Thalassiosira eccentrica was investigated by atomic force microscopy (AFM). Important morphological features of the silica frustules of diatoms are described, including: the organisation of porous silica layers, their topography, pore size, shape and density. The outer layer of Coscinodiscus sp., commonly called the cribellum, consists of a characteristic hexagonal array of pores with pore sizes of around 45 nm. This thin membrane covers a second structural layer where two different silica surfaces are identified. The outer part, known as the cribrum consists of hexagonally packed pores of about 200 nm diameter. The inner part, known as the foramen layer, consists of larger and radially distributed holes with a diameter of around 1,150 nm. The second diatom species investigated, T. eccentrica produces a frustule with one silica structural layer featuring two different porous surfaces. The outer surface has large (800 nm diameter) holes (foramen) while the inner surface contains a porous wall with pores comparable in size to the Coscinodiscus sp. cribellum. The inner and outer surfaces of the frustule wall of both diatoms are hence in reverse order. However, the size of the small pores is similar for both species. High-resolution AFM also revealed the granular nanostructure of the diatom biosilica with grain sizes from 20 to 70 nm diameters.


Atomic force microscopy Biomineralisation Biosilica Porous membranes Diatoms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by funding from the Australian Research Council. We thank Adelaide Microscopy for use of their scanning electron microscopes.


  1. 1.
    C.R. Lowe, Curr. Opin. Struct. Biol. 10, 428 (2000)CrossRefGoogle Scholar
  2. 2.
    S.I. Stup, P.V. Braun, Science 277, 142 (1997)Google Scholar
  3. 3.
    M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Scholten, F. Baneyx, Nat. Mater. 3, 77 (2003)Google Scholar
  4. 4.
    E.G. Vrieling, T.P.M. Beelen, R.A. van Santen, W.W.C. Gieskes, J. Biotechnol. 70, 39 (1999)CrossRefGoogle Scholar
  5. 5.
    P. Ball, Nanotechnology 13, 15 (2002)CrossRefGoogle Scholar
  6. 6.
    J. Parkinson, R. Gordon, TiBTECH 17, 190 (1999)Google Scholar
  7. 7.
    R.W. Drum, R. Gordon, TiBTECH 21, 325 (2003)Google Scholar
  8. 8.
    T. Cordain, P.J. Lopez, ChemBioChem. 4, 251 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Hilderbrand, Prog. Org. Coating 47, 256 (2003)CrossRefGoogle Scholar
  10. 10.
    G.R. Hasle, E.E. Syversten, in Marine Diatoms: Identifying Marine Diatoms and Dinoflagellates, ed. by K. Tomas (Academic Press, San Diego, 1996)Google Scholar
  11. 11.
    F. Noll, M. Sumper, N. Hampp, Nano Lett. 2, 91 (2002)CrossRefGoogle Scholar
  12. 12.
    R. Wetherbee, S. Craford, P. Mulvaney, in Biomineralisation: From Biology to Biotechnology and Medical Application, ed. by E. Beurlein (Wiley-VCH, Weinheim, 2000), p 189Google Scholar
  13. 13.
    K.H. Sandhage, M.B. Dickerson, P.M. Huseman, M.A. Carana, J.D. Clifton, T.A. Bull, T.J. Heibel, W.R. Overton, M.E.A. Shoenwaelder, Adv. Mater. 14, 429 (2002)CrossRefGoogle Scholar
  14. 14.
    S.B. Cheng, C.D. Skinner, J. Taylor, A. Attiya, W.E. Lee, G. Picelli, D.J. Harison, Anal. Chem. 73, 1472 (2001)CrossRefGoogle Scholar
  15. 15.
    D. Losic, J.G. Mitchell, N.H. Voelcker, Chem. Commun. 4905 (2005)Google Scholar
  16. 16.
    M.S. Hale, J.G. Mitchell, Aquat. Microb. Ecol. 24, 287 (2001)Google Scholar
  17. 17.
    M.S. Hale, J.G. Mitchell, Nano Lett 1, 617 (2001)CrossRefGoogle Scholar
  18. 18.
    M.S. Hale, J.G. Mitchell, Nano Lett. 2, 657 (2002)CrossRefGoogle Scholar
  19. 19.
    G.J.M. Bruin, Electrophoresis 21, 3931 (2000)CrossRefGoogle Scholar
  20. 20.
    M. De Stefano, W.H.C.F. Kooistra, D. Marino, J. Phycol. 39, 735 (2003)CrossRefGoogle Scholar
  21. 21.
    E. Kiefer, L. Sigg, P. Schosseler, Environ. Sci. Technol. 31, 759 (1997)CrossRefGoogle Scholar
  22. 22.
    S.A. Craford, M.J. Higgins, P. Mulvaney, R. Wetherbee, J. Phycol. 37, 543 (2001)CrossRefGoogle Scholar
  23. 23.
    M.J. Higgins, J.E. Sader, P. Mulvaney, R. Wetherbee, J. Phycol. 39, 722 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Linder, J. Colchero, H.J. Apell, O. Marti, J. Mlynek, Ultramicroscopy 42–44, 329 (1992)CrossRefGoogle Scholar
  25. 25.
    I.C. Gebeshuber, J.H. Kindt, J.B. Thompson, Y. Del Amo, H. Stachelberger, M.A. Brzezinski, G.D. Stucky, D.E. Morse, P.K. Hansma, J. Microsc. 212, 292 (2003)CrossRefGoogle Scholar
  26. 26.
    R. Lal, S.A. John, Am. J. Physiol. 266, C1 (1994)Google Scholar
  27. 27.
    G. Massé, M. Poulin, S.T. Belt, J.M. Robert, A. Barreaus, Y. Rince, S.J. Rowland, J. Microsc. 204, 87 (2001)CrossRefGoogle Scholar
  28. 28.
    N. Almqvist, Y. Delamo, B.L. Smith, N.H. Thomson, A. Bartholdson, R. Lal, M. Brzezinski, P.K. Hansma, J. Microsc. 202, 518 (2003)CrossRefGoogle Scholar
  29. 29.
    R.R.L. Guillard, J.H. Ryther, Can. J. Microbiol. 8, 229 (1962)CrossRefGoogle Scholar
  30. 30.
    R. Hasle, G.A. Fryxell, Trans. Am. Microsc. Soc. 89, 469 (1970)CrossRefGoogle Scholar
  31. 31.
    D. Losic, K. Short, J.J. Gooding, J.G. Shapter, J. Serb. Chem. Soc. 69, 93 (2004)CrossRefGoogle Scholar
  32. 32.
    N. Kroger, R. Deutzmann, M. Sumper, J. Biol. Chem. 276, 6066 (2001)CrossRefGoogle Scholar
  33. 33.
    C.E. Hamm, R. Merkel, O. Springer, P. Jurkojc, C. Maler, K. Prechtel, V. Smatacek, Nature 421, 841 (2003)CrossRefGoogle Scholar
  34. 34.
    A. Janshoff, C. Steinem, N. Voelcker, V. Lin, M.R. Ghadiri, Tetrahedron 60, 11259 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Dusan Losic
    • 1
    • 2
  • Rachel J. Pillar
    • 1
  • Thorsten Dilger
    • 1
  • James G. Mitchell
    • 2
  • Nicolas H. Voelcker
    • 1
  1. 1.School of Chemistry, Physics and Earth ScienceFlinders UniversityAdelaideAustralia
  2. 2.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations