Skip to main content
Log in

Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Highly porous NiO was prepared via a combination of sol-gel process with supercritical drying method in this paper. The as-synthesized NiO samples exhibit 80–90% porosity and high surface area, ie, 180.5–325.6 m2g−1. Cyclic voltammetric and chronopotentiometric measurements indicated the aerogel-like NiO in 1 mol.L−1 KOH solution to behave capacitive well due to its uniform mesoporous microstructure. It was also observed that post-heating temperature plays a critical role in the mesoporous nature of the aerogel-like materials. An optimal heating temperature of 300C was found to favor the formation of mesopores, which account for the large specific capacitance of as high as 125 F.g−1. The average specific capacitance of the aerogel-like NiO was observed to be about 75–125 F.g−1 between a potential window of 0–0.35 V vs. SCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991)

    Article  CAS  Google Scholar 

  2. S. Sarangapani, B.V. Tilak, and C-P. Chen, J. Electrochem. Soc. 143, 3791 (1996)

    Article  CAS  Google Scholar 

  3. B.E. Conway, Electrochemical Supercapacitos: Scientific Fundamentals and Technological Applications. (Kluwer Academic/Plenum Publishers, New York, 1999)

    Google Scholar 

  4. A. Nishino, J. Power Sources 60, 137 (1996)

    Article  CAS  Google Scholar 

  5. M. Nakamura, M. Nakanishi, and K. Yamamoto, J. Power Sources 60, 225 (1996)

    Article  CAS  Google Scholar 

  6. D. Qu, J. Power Sources 109, 403 (2002)

    Article  CAS  Google Scholar 

  7. J.P. Zheng, P.J. Cygan, and T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995)

    Article  CAS  Google Scholar 

  8. T. Liu, W.G. Pell, and B.E. Conway, Electrochim. Acta 42, 3541 (1997)

    Article  CAS  Google Scholar 

  9. A.A.F. Grupioni, E. Arashiro, and T.A.F. Lassali, Electrochim. Acta 48, 407 (2002)

    Article  CAS  Google Scholar 

  10. K.C. Liu and M.A. Anderson, J. Electrochem. Soc. 143, 124 (1996)

    Article  CAS  Google Scholar 

  11. V. Srinivasan, and J.W. Weidner, J. Electrochem. Soc. 144, L210 (1997)

    Article  CAS  Google Scholar 

  12. V. Srinivasan, and J.W. Weidner, J. Electrochem. Soc. 147, 880 (2000)

    Article  CAS  Google Scholar 

  13. A.A.F. Grupioni and T.A.F. Lassali, J. Electrochem. Soc. 148, A1015 (2001)

    Article  CAS  Google Scholar 

  14. K.W. Nam, W.S. Yoon, and K.B. Kim, Electrochim. Acta 47, 3201 (2002)

    Article  CAS  Google Scholar 

  15. E.E. Kalu, T.T. Nwoga, V. Srinivasan, and J.W. Weidner, J. Power Sources 92, 163 (2001)

    Article  CAS  Google Scholar 

  16. V. Srinivasan and J.W. Weidner, J. Power Sources 108, 15 (2002)

    Article  CAS  Google Scholar 

  17. H.-K. Kim, T.-Y. Seong, J.-H. Lim, W. Li CHo, and Y. Soo Yoon, J. Power Sources 102, 167 (2001)

    Article  CAS  Google Scholar 

  18. C. Lin, J.A. Ritter, and B.N. Popov, J. Electrochem. Soc. 145, 4097 (1998)

    Article  CAS  Google Scholar 

  19. S.C. Pang and M.A. Anderson, J. Mater. Res. 15, 2096 (2000)

    Article  CAS  Google Scholar 

  20. R.N. Reddy and R.G. Reddy, J. Power Sources 124, 330 (2003)

    Article  CAS  Google Scholar 

  21. M. Wu, G.A. Snook, G.Z. Chen, and D.J. Fray, Electrochem. Commun. 6, 499 (2004)

    Article  CAS  Google Scholar 

  22. K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, and S.H. Chang, J. Power Sources 103, 305 (2002)

    Article  CAS  Google Scholar 

  23. K.S. Ryu, Y.-G. Lee, Y.-S. Hong, Y.J. Park, X. Wu, and K.M. Kim, Electrochim. Acta 50, 838 (2004)

    Google Scholar 

  24. M. Wu, G.A. Snook, V. Gupta, M. Shaffer, D.J. Fray, and G.Z. Chen, J. Maters. Chem. 15, 2297 (2005)

    Article  CAS  Google Scholar 

  25. S.T. Mayer, R.W. Pekela, and J.L. Kaschmitter, J. Electrochem. Soc. 140, 446 (1993)

    Article  CAS  Google Scholar 

  26. H. Si, Electrochim. Acta 41, 1633 (1996)

    Article  Google Scholar 

  27. H. Probstle, C. Schmitt, and J. Fricke, J. Non-Cryst. Sol. 225, 81 (1998)

    Article  Google Scholar 

  28. U. Fischer, R. Saliger, V. Bock, R. Petriceyic, and J. Fricke, J. Porous Mater. 4, 281 (1997)

    Article  CAS  Google Scholar 

  29. V. Subramanian, S.C. Hall, P.H. Smith, and B. Rambabu, Solid State Ionics 175, 511 (2004)

    Article  CAS  Google Scholar 

  30. W. Dong, J. Sakamoto, and B. Dunn, J. Sol-Gel Sci. Tech. 26, 641 (2003)

    Article  CAS  Google Scholar 

  31. P.E. Tang, J.S. Sakamoto, E. Baudrin, and B. Dunn, J. Non-Cryst. Sol. 350, 67 (2004)

    Article  CAS  Google Scholar 

  32. W. Xing, F. Li, Z.-F. Yan, and G.Q. Lu, J. Power Sources 134, 324 (2004)

    Article  CAS  Google Scholar 

  33. G.A.M. Reynolds, M.S. Dresselhaus, A.W.P. Fung, Z.H. Wang, and R.W. Pekala, J. Non-Crys. Sol. 18, 827 (1995)

    Google Scholar 

  34. M.S. Kim, T.S. Hwang, and K.B. Kim, J. Electrochem. Soc. 144, 1537 (1997)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengqiang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Gao, J., Zhang, S. et al. Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors. J Porous Mater 13, 407–412 (2006). https://doi.org/10.1007/s10934-006-8038-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-8038-x

Keywords

Navigation