Skip to main content
Log in

Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The selective oxidation of hydrocarbons is an important value-enhancing chemical transformation in particular with respect to fine chemicals and pharmaceuticals production. Enzymatic oxidations operate under mild reaction conditions and produce little if any waste. However, its industrial use is still limited mainly due to their high cost and the low space time yields. In the present work, chloroperoxiase from Calariomyces fumago immobilized on the mesoporous molecular sieve SBA-15 was applied for the oxidation of indole to 2-oxoindole using hydrogen peroxide or tert.-butyl hydroperoxide as oxidants. The performance of the immobilized enzyme was found to be superior to native chloroperoxidase with respect to maximum conversion and pH range applicable. However, immobilized CPO is still sensitive to high concentrations of hydrogen peroxide. The use of tert.-buty hydroperoxide is found to avoid this problem, but the reaction rate is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Morris and L.P. Hager, J. Biol. Chem. 241, 1763 (1966).

    CAS  Google Scholar 

  2. M.P.J. van Deurzen, F. van Rantwijk, and R.A. Sheldon, Tetrahedron 53, 13183 (1997).

    Article  Google Scholar 

  3. S. Colonna, N. Gaggero, C. Richelmi, and P. Pasta, Trends Biotechnol. 17, 163 (1999).

    Article  CAS  Google Scholar 

  4. W. Adam, M. Lazarus, C.R. Saha-Möller, O. Weichold, U. Hoch, D. Häring, and P. Schreier, Adv. Biochem. Eng. Biotechnol. 63, 73 (1999).

    CAS  Google Scholar 

  5. F. van Rantwijk and R.A. Sheldon, Curr. Opin. Biotechnol. 11, 554 (2000).

    Article  Google Scholar 

  6. R. Vazquez-Duhalt, M. Ayala, and F.J. Marquez-Rocha, Phytochemistry 58, 929 (2001).

    Article  CAS  Google Scholar 

  7. S. Colonna, N. Gaggero, L. Casella, G. Carrera, and P. Pasta, Tetrahedron Asymmetry 3, 95 (1992).

    Article  CAS  Google Scholar 

  8. L.P. Hager, F.J. Lakner, and A. Basavapathruni, J. Mol. Catal. B: Enzym. 5, 95 (1998).

    Article  CAS  Google Scholar 

  9. M.D. Corbett and B.R. Chipko, Biochem. J. 183, 269 (1979).

    CAS  Google Scholar 

  10. T.A. Kadima and M.A. Pickard, Appl. Environ. Microbiol. 56, 3474 (1990).

    Google Scholar 

  11. S. Aoun and M. Baboulene, J. Mol. Catal. B: Enzym. 4, 101 (1998).

    Article  CAS  Google Scholar 

  12. Y.J. Han, J.T. Watson, G. D. Stucky, and A. Butler, J. Mol. Catal. B: Enzym. 17, 1 (2002).

    Article  CAS  Google Scholar 

  13. M. Bakker, F. van de Velde, F. van Ranwijk, and R.A. Sheldon, Biotechnol. Bioeng. 70, 342 (2000).

    Article  CAS  Google Scholar 

  14. A. Petri, T. Gambicorti, and P. Salvadori, J. Mol. Catal. B: Enzym. 27, 103 (2004).

    Article  CAS  Google Scholar 

  15. A. Borole, S. Dai, C.L. Cheng, M. Rodriguez, and B.H. Davison, Appl. Biochem. Biotechnol. 273, 113 (2004).

    Google Scholar 

  16. V. Trevisan, M. Signoretto, S. Colonna, V. Pironti, and G., Strukul, Angew, Chem. Int. Ed. 43, 4097 (2004).

    Article  CAS  Google Scholar 

  17. M. Hartmann and A. Vinu, Langmuir 18, 8010 (2002).

    Article  CAS  Google Scholar 

  18. D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, and G.D. Stucky, J. Am. Chem. Soc. 120, 6024 (1998).

    Article  CAS  Google Scholar 

  19. D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Science 279, 548 (1998).

    Article  CAS  Google Scholar 

  20. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscow, R.A. Pierotti, J. Rouquérol, and T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  21. M. Imperor-Clerc, P. Davidson, and A. Davidson, J. Am. Chem. Soc. 122, 11925 (2000).

    Article  CAS  Google Scholar 

  22. P. Selvam, S.K. Bhatia, and C.G. Sonwane, Ind. Eng. Chem. Res. 40, 3237 (2001).

    Article  CAS  Google Scholar 

  23. E. Torres, B. Siminovich, E. Barzana, and R. Vazquez-Duhalt, J. Mol. Catal. B: Enzym. 4, 155 (1998).

    Article  CAS  Google Scholar 

  24. F. van de Velde, M. Bakker, F. van Rantwijk, and R.A. Sheldon, Biotechnol. Bioeng. 72, 523 (2001).

    Article  Google Scholar 

  25. L. Santhanam and J.S. Dordick, Biocatal. Biotransform. 20, 265 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, M., Streb, C. Selective oxidation of indole by chloroperoxidase immobilized on the mesoporous molecular sieve SBA-15. J Porous Mater 13, 347–352 (2006). https://doi.org/10.1007/s10934-006-8029-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-006-8029-y

Keywords

Navigation