Skip to main content

Water-assisted formation of honeycomb structured porous films

Abstract

Honeycomb structured porous materials were formed using four different casting variations of the water droplet templating method. The film quality of the materials generated from these casting techniques (airflow, cold stage, casting on water, and emulsion methods) was investigated by altering the polymer architecture and composition. Linear, star, and comb polystyrene as well as an amphiphilic diblock copolymer comprised of polystyrene-block-poly(dimethylacrylamide) (PS-b-PDMA) were previously synthesized and cast into films via these techniques. While irregular pore distributions were observed for linear polystyrene films generated by every technique screened, increasing the architectural complexity of the polymer yielded more regular films for a broad range of casting conditions for each of the techniques. With the exception of linear polystyrene, the airflow casting technique was shown to be the only technique capable of generating regular porous films for all of the polymeric materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.E. Kersting, Synthetic Polymer Membrane (Wiley, New York, 1985).

    Google Scholar 

  2. 2.

    G. Ramsey, Nature Biotechnol. 16, 40 (1998).

    Article  Google Scholar 

  3. 3.

    J.E.G.J. Wjinhoven and W. L. Vos, Science 281, 802 (1998).

    Article  Google Scholar 

  4. 4.

    M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999).

    Article  CAS  Google Scholar 

  5. 5.

    A. Manz and H. Becker, (Eds. Microsystem Technology in Chemistry and Life Science; Springer-Verlag: Berlin, 1998).

    Google Scholar 

  6. 6.

    Y. Chen and A. Pépin, Electrophoresis 22, 187 (2001).

    Article  CAS  Google Scholar 

  7. 7.

    J.S. King, E. Graugnard, and C.J. Summers, Advanced Materials 17, 1010 (2005).

    Article  CAS  Google Scholar 

  8. 8.

    G. Widawski, M. Rawieso, and B. Frančois, Nature 369, 397 (1994).

    Article  Google Scholar 

  9. 9.

    Lord Rayleigh, Nature 86, 416 (1911).

    Google Scholar 

  10. 10.

    M.H. Stenzel. Aust. J. Chem. 55, 239 (2002).

    Article  CAS  Google Scholar 

  11. 11.

    M. Hernández-Guerrero, C. Barner-Kowollik, T.P. Davis, and M.H. Stenzel, Eur. Polym. J. 41(10), 2264 (2005).

    Article  Google Scholar 

  12. 12.

    H. Yabu, M. Tanaka, K. Ijiro, and M. Shimomura, Langmuir 19, 6297 (2003).

    Article  CAS  Google Scholar 

  13. 13.

    C. Barner-Kowollik, H. Dalton, T.P. Davis, and M.H. Stenzel, Angewandte Chemie, International Edition 42, 3664 (2003).

    Article  CAS  Google Scholar 

  14. 14.

    L. Song, R.K. Bly, J.N. Wilson, S. Bakbak, J.O. Park, M. Srinivasarao, and U.H.F. Bunz, Adv. Mater. 16, 115 (2004).

    Article  CAS  Google Scholar 

  15. 15.

    T. Nishikawa, M. Nonomura, K. Arai, J. Hayashi, T. Sawadaishi, Y. Nishiura, M. Hara, and M. Shimomura, Langmuir 19, 6193 (2003).

    Article  CAS  Google Scholar 

  16. 16.

    J. Peng, Y. Han, and B. Li, Polymer 45, 447 (2004).

    Article  CAS  Google Scholar 

  17. 17.

    O. Pitois and B. Frančois, Colloid Polym. Sci. 277, 574 (1999).

    Article  CAS  Google Scholar 

  18. 18.

    O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, Langmuir 16, 6071 (2000).

    Article  CAS  Google Scholar 

  19. 19.

    A. Böker, Y. Lin, K. Chiapperini, R. Horowitz, M. Thompson, V. Carreon, T. Xu, C. Abetz, H. Skaff, A.D. Dinsmore, T. Emrick, and T.P. Russell, Nature Mat. 3, 302 (2004).

    Article  Google Scholar 

  20. 20.

    H.T. Lord, J.F. Quinn, S.D. Angus, M.R.Whittaker, M.H. Stenzel, and T.P. Davis, J. Mat. Chem. 13, 2819 (2003).

    Article  CAS  Google Scholar 

  21. 21.

    T. Nishikawa, R. Ocurra, J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara, and M. Shimomura, Langmuir 18, 5734 (2002).

    Article  CAS  Google Scholar 

  22. 22.

    L.A. Connal, P.A. Gurr, G.G. Qiao, and D.H. Solomon, J. Mat. Chem. 15, 1286 (2005).

    CAS  Google Scholar 

  23. 23.

    G.D. Fu, E.T. Kang, and K.G. Neoh, Langmuir 21, 3619 (2005).

    Article  CAS  Google Scholar 

  24. 24.

    D.M. Haddleton, E. Ryan, A.M. Heming, E.J. Kelly, and D. Kukulj, New Journal of Chemistry 23(5), 477 (1999).

    Article  CAS  Google Scholar 

  25. 25.

    A. Nygard, C. Barner-Kowollik, T.P. Davis, and M.H. Stenzel, Langmuir submitted (2005).

  26. 26.

    S. D. Angus and T.P. Davis, Langmuir 18, 9547 (2002).

    Article  CAS  Google Scholar 

  27. 27.

    A. Bolognesi, C. Mercogliano, S. Yunus, M. Civardi, D. Comoretto, and A. Turturro, Langmuir 21, 3480 (2005).

    Article  CAS  Google Scholar 

  28. 28.

    M. Stenzel-Rosenbaum, T.P. Davis, A.G. Fane, and V. Chen, Macromolecules 34, 5433 (2001).

    Article  CAS  Google Scholar 

  29. 29.

    M.H. Stenzel, T.P. Davis, and A.G. Fane, J. Mat. Chem. 13, 2090 (2003).

    Article  CAS  Google Scholar 

  30. 30.

    M.H. Stenzel and T.P. Davis, Aust. J. Chem. 56, 1035 (2003).

    Article  CAS  Google Scholar 

  31. 31.

    H.Y. Lord, M.R. Whittaker, J.F. Quinn, C. Barner-Kowollik, M.H. Stenzel, J.P.A Heuts, and T.P. Davis, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 43, 118 (2002).

    CAS  Google Scholar 

  32. 32.

    P. Alexandridis, U. Olsson, and B. Lindman, Langmuir 14, 2627 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martina H. Stenzel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wong, K.H., Hernández-Guerrero, M., Granville, A.M. et al. Water-assisted formation of honeycomb structured porous films. J Porous Mater 13, 213–223 (2006). https://doi.org/10.1007/s10934-006-8007-4

Download citation

Keywords

  • Honeycomb structure
  • Porous film
  • Breath figures
  • RAFT polymerization