Skip to main content

Paleolimnological comparison of algal changes in a clear-versus a brown-water lake over the last two centuries in the northeastern U.S.A

Abstract

We reconstructed historical diatom and algal pigment records from a clear-water versus a brown-water lake in the northeastern U.S. to compare ecological responses to reduced acid deposition in recent decades in the context of a 140-year record, during which time multiple external drivers influenced both lakes. In the clear-water lake, diatom community structure changed continually from the beginning of the record, while it was more static in the brown-water lake over time, with the period of greatest change occurring after 1990. Concentrations of algal pigments were low in the clear-water lake until 1940, then increased during the 1940 to 1990 period, after which they slightly declined. The opposite pattern occurred in the brown-water lake—algal pigments were high until 1940, decreased in the period from 1940 to 1990, and increased after 1990. The clear-water lake was more responsive to long-term climate warming beginning at the end of the Little Ice Age. During the period of higher acid deposition, light availability was more important for controlling algal responses in the clear-water lake, while nutrient subsidies from allochthonous DOC were likely the primary control in the brown-water lake. With reductions in atmospheric sulfate deposition, both lakes showed signs of recovery toward pre-acidification conditions, but these changes were dampened in the clear-water lake, suggesting greater sensitivity to acid deposition and other external drivers such as effects of climate change. Our study highlights strong and divergent algal responses in a clear-water vs. a brown-water lake during a period of higher acid deposition, and considers these changes in the context of multiple drivers of environmental change over the past 140 years.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Acadia National Park Water Resources Program. Acadia National Park Lake Chemistry Dataset [Unpublished raw data]. National Park Service (NPS) funded monitoring and research

  • Appleby PG, Oldfield F (1978) The Calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8. https://doi.org/10.1016/S0341-8162(78)80002-2

    Article  Google Scholar 

  • Battarbee RW, Jones VJ, Flower BP, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol J, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, Algal, and Siliceous Indicators. Kluwer, Dordrecht, pp 155–201

    Chapter  Google Scholar 

  • Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M (2010) Water temperature and stratification depth independently shift cardinal events during plankton spring succession. Global Change Biol 16:1954–1965. https://doi.org/10.1111/j.1365-2486.2009.02134.x

    Article  Google Scholar 

  • Boeff KA, Strock KE, Saros JE (2016) Evaluating planktonic diatom response to climate change across three lakes with differing morphometry. J Paleolimnol 56:33–47. https://doi.org/10.1007/s10933-016-9889-z

    Article  Google Scholar 

  • Brown RE, Nelson SJ, Saros JE (2017) Paleolimnological evidence of the consequences of recent increased dissolved organic carbon (DOC) in lake of the northeastern USA. J Paleolimnol 57:19–35. https://doi.org/10.1007/s10933-016-9913-3

    Article  Google Scholar 

  • Camburn KE, Charles DF (2000) Diatoms of low-alkalinity lakes in the Northeastern United States. Acad Nat Sci Phila Spec Pub 18:152

    Google Scholar 

  • Charles DF, Binford MW, Furlong ET, Hites RA, Mitchell MJ, Norton SA, Oldfield F, Paterson MJ, Smol JP, Uutala AJ, White JR, Whitehead DR, Wise RJ (1990) Paleoecological investigation of recent lake acidification in the Adirondack Mountains, N.Y. J Paleolimnol 3:195–241

    Google Scholar 

  • Chen N, Bianchi TS, McKee BA, Bland JM (2001) Historical trends of hypoxia on the Louisiana shelf: application of pigments as biomarkers. Org Geochem 32:543–561

    Article  Google Scholar 

  • Clair TA, Dennis IF, Vet R (2011) Water chemistry and dissolved organic carbon trends in lakes from Canada’s Atlantic Provinces: no recovery from acidification measured after 25 years of lake monitoring. Can J Fish Aquat Sci 68:663–674. https://doi.org/10.1139/F11-013

    Article  Google Scholar 

  • Cremer H, Wagner B, Melles M, Hubberton H-W (2001) The postglacial environmental development of Raffles Sø, East Greenland: inferences from a 10,000 year diatom record. J Paleolimnol 26:67–87. https://doi.org/10.1023/A:1011179321529

    Article  Google Scholar 

  • Daggett CT, Saros JE, Lafrancois BM, Simon KS, Amirbahman A (2015) Effects of increased concentrations of inorganic nitrogen and dissolved organic matter on phytoplankton in boreal lakes with differing nutrient limitation patterns. Aquat Sci 77:511–521. https://doi.org/10.1007/s00027-015-0396-5

    Article  Google Scholar 

  • Davis RB (1987) Paleolimnological diatom studies of acidification of lakes by acid rain: an application of quaternary science. Quat Sci Rev 6:147–163. https://doi.org/10.1016/0277-3791(87)90031-X

    Article  Google Scholar 

  • Davis RB, Norton SA, Hess CT, Brakke DF (1983) Paleolimnological reconstruction of the effects of atmospheric deposition of acids and heavy metals on the chemistry and biology of lakes in New England and Norway. Hydrobiologia 103:113–123. https://doi.org/10.1007/BF00028438

    Article  Google Scholar 

  • Dixit SS, Keller W, Dixit AS, Smol JP (2001) Diatom-inferred dissolved organic carbon reconstructions provide assessments of past UV-B penetration in Canadian Shield lakes. Can J Fish Aquat Sci 58:543–550. https://doi.org/10.1139/cjfas-58-3-543

    Article  Google Scholar 

  • Donahue WF, Schindler DW, Page SJ, Stainton MP (1998) Acid-induced changes in DOC quality in an experimental whole-lake manipulation. Environ Sci Technol 32:2954–2960. https://doi.org/10.1021/es980306u

    Article  Google Scholar 

  • Driscoll CT, Driscoll KM, Roy KM, Mitchell MJ (2003) Chemical responses of lakes in the Adirondack region of New York to declines in acid deposition. Environ Sci Technol 37:2036–2042. https://doi.org/10.1021/es020924h

    Article  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol Oceanogr 41:912–920. https://doi.org/10.4319/lo.1996.41.5.0912

    Article  Google Scholar 

  • U.S. Geological Survey (2014) NLCD 2011 Land Cover (2011 Edition, amended 2014) - National Geospatial Data Asset (NGDA) Land Use Land Cover: U.S. Geological Survey.

  • Gilman RA, Chapman CA, Lowell TV, Borns HW (1988) The Geology of Mount Desert Island: A Visitor’s Guide to the Geology of Acadia National Park, pp. 1–50, Maine Geol. Surv., Dep. of Conservation, Augusta, Maine.

  • Granéli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706. https://doi.org/10.4319/lo.1996.41.4.0698

    Article  Google Scholar 

  • Gunn JM, Snucins E, Yan ND, Arts MT (2001) Use of water clarity to monitor the effects of climate change and other stressors on oligotrophic lakes. Environ Monit Assess 67:69–88. https://doi.org/10.1023/A:1006435721636

    Article  Google Scholar 

  • Hill MO, Gauch HG Jr (1990) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Hobbs WO, Vinebrooke RD, Wolfe AP (2011) Biogeochemical responses of two alpine lakes to climate change and atmospheric deposition, Jasper and Banff National parks, Canadian Rocky Mountains. Can J Fish Aquat Sci 68:1480–1494. https://doi.org/10.1139/F2011-058

    Article  Google Scholar 

  • Hustedt F (1939) Systematische und okologische Untersuchungen uber die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen Limnologischen Sunda-Expedition. III. Die Okologischen Faktoren und ihr Einfluss of die Diatomeen-flora. Archiv Fur Hydrobiologie, Supplement-Band 16:274–394

    Google Scholar 

  • Jeffries DS, Clair TA, Couture S, Dillon PJ, Dupont J, Keller W, McNicol DK, Turner MA, Vet R, Weeber R (2003) Assessing the recovery of lakes in southeastern Canada from the effects of acid deposition. Ambio 32:176–182. https://doi.org/10.1579/0044-7447-32.3.176

    Article  Google Scholar 

  • Keller W, Gunn JM, Yan ND (1999) Acid rain—perspectives on lake recovery. J Aquat Ecosyst Stress Recovery 6:207–216. https://doi.org/10.1023/A:1009983318502

    Article  Google Scholar 

  • Keller W, Heneberry J, Leduc J, Gunn J, Yan N (2006) Variations in epilimnion thickness in small boreal shield lakes: relationships with transparency, weather and acidification. Environ Monit Assess 115:419–431. https://doi.org/10.1007/s10661-006-7237-x

    Article  Google Scholar 

  • Kingston JC, Birks HJB (1990) Dissolved organic carbon reconstructions from diatom assemblages in PIRLA project lakes, North America. Phil Trans R Soc Lond 327:279–288

    Google Scholar 

  • Kissman CEH, Williamson CE, Rose KC, Saros JE (2013) Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing. Limnol Oceanogr 58:867–880. https://doi.org/10.4319/lo.2013.58.3.0867

    Article  Google Scholar 

  • Klug J (2002) Positive and negative effects of allochthonous dissolved organic matter and inorganic nutrients on phytoplankton growth. Can J Fish Aquat Sci 59:85–95. https://doi.org/10.1139/F01-194

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart, vol 2, p 1–4

  • Leavitt PR, Carpenter SR (1990) Regulation of pigment sedimentation by photo-oxidation and herbivore grazing. Can J Fish Aquat Sci 47:1166–1176. https://doi.org/10.1139/f90-136

    Article  Google Scholar 

  • Leech DM, Pollard AI, Labou SG, Hampton SE (2018) Fewer blue lakes and more murky lakes across the continental U.S.: Implications for planktonic food webs. Limnol Oceanogr 63:2661–2680. https://doi.org/10.1002/lno.10967

    Article  Google Scholar 

  • Legendre P, Birks HJB (2001) Statistical learning in Palaeolimnology. In: Birks HJB, Lotter AF, Juggins S, Smol JP (eds) Tracking environmental change using lake sediments. Data handling and numerical techniques, vol 5. Kluwer, Dordrecht

    Google Scholar 

  • Likens GE (1989) Some aspects of air pollutant effects on terrestrial ecosystems and prospects for the future. Ambio 18:172–178

    Google Scholar 

  • Malik HI, Northington RM, Saros JE (2017) Nutrient limitation status of Arctic lakes affects the responses of Cyclotella sensu lato diatom species to light: implications for distribution patterns. Polar Biol 40:2445–2456. https://doi.org/10.1007/s00300-017-2156-6

    Article  Google Scholar 

  • Malik HI, Saros JE (2016) Effects of temperature, light and nutrients on five Cyclotella sensu lato taxa assessed with in situ experiments in arctic lakes. J Plankton Res 38:431–442. https://doi.org/10.1093/plankt/fbw002

    Article  Google Scholar 

  • McDowell WH, Likens GE (1988) Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol Monogr 58:177–195. https://doi.org/10.2307/2937024

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgäsen T, Wilander A, Skelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540. https://doi.org/10.1038/nature06316

    Article  Google Scholar 

  • Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hargreaves BR, Modenutti B, Moeller R, Queimalinos C (1995) The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr 40:1381–1391. https://doi.org/10.4319/lo.1995.40.8.1381

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin RR, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Wagner H (2013) vegan: community ecology package. R package version 2.0–10. http://CRAN.R-project.org/package=vegan

  • Pace ML, Cole JJ (2002) Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanog 47:333–342. https://doi.org/10.4319/lo.2002.47.2.0333

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Rose KC, Williamson CE, Saros JE, Sommaruga R, Fischer JM (2009) Differences in UV transparency and thermal structure between alpine and subalpine lakes: implications for organisms. Photochem Photobiol Sci 8:1244–1256. https://doi.org/10.1039/b905616e

    Article  Google Scholar 

  • Rose KC, Williamson CE, Fischer JM, Connelly SJ, Olson M, Tucker AJ, Noe DA (2012) The role of ultraviolet radiation and fish in regulating the vertical distribution of Daphnia. Limnol Oceanogr 57:1867–1876. https://doi.org/10.4319/lo.2012.57.6.1867

    Article  Google Scholar 

  • Saros JE, Interlandi SJ, Doyle S, Michel TJ, Williamson CE (2005) Are the deep chlorophyll maxima in alpine lakes primarily induced by nutrient availability, not UV avoidance? Arct Antarct Alp Res 37:557–563. https://doi.org/10.1657/1523-0430(2005)037[0557:ATDCMI]2.0.CO;2

    Article  Google Scholar 

  • Saros JE, Northington RM, Anderson DS, Anderson NJ (2016) A whole-lake experiment confirms a small centric diatom species as an indicator of changing lake thermal structure. Limnol Oceanogr Lett 1:27–35. https://doi.org/10.1002/lol2.10024

    Article  Google Scholar 

  • Seekell DA, Lapierre JF, Ask J, Bergström A-K, Deininger A, Rodrigues P, Karlsson J (2015) The influence of dissolved organic carbon on primary production in northern lakes. Limnol Oceanogr 60:1276–1285. https://doi.org/10.1002/lno.10096

    Article  Google Scholar 

  • Snucins E, Gunn J (2000) Interannual variation in the thermal structure of clear and colored lakes. Limnol Oceanogr 45:1639–1646. https://doi.org/10.4319/lo.2000.45.7.1639

    Article  Google Scholar 

  • Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–1219. https://doi.org/10.4319/lo.2007.52.3.1208

    Article  Google Scholar 

  • Spierre SG, Wake C, Wake CP, Gittell R, Hurtt G, Kelly T, Markham A, Schaefer D, VanDeveer S (2010) Trends in extreme precipitation events for the northeastern United States. Carbon Solutions New England

  • Stauffer R (1990) Alkalinities of Maine lakes: Are they really changing? Limnol Oceanogr 35:1238–1257. https://doi.org/10.4319/lo.1990.35.6.1238

    Article  Google Scholar 

  • Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, Kahl JS, Kellogg JH, Kemp A, Mannio J, Monteith DT, Murdoch PS, Patrick S, Rebsdorf A, Skelkvåle BL, Stainton MP, Traaen T, van Dam H, Webster KE, Wieting J, Wilander A (1999) Regional trends in aquatic recovery from acidification in North America and Europe. Nature 401:575–578. https://doi.org/10.1038/44114

    Article  Google Scholar 

  • Stone JR, Fritz SC (2004) Three-dimensional modeling of lacustrine diatom habitat areas: Improving paleolimnological interpretation of planktic: benthic ratios. Limnol Oceanogr 49:1540–1548. https://doi.org/10.4319/lo.2004.49.5.1540

    Article  Google Scholar 

  • Stone JR, Saros JE, Pederson GT (2016) Coherent late-Holocene climate-driven shifts in the structure of three Rocky Mountain lakes. Holocene 26:1103–1111. https://doi.org/10.1177/0959683616632886

    Article  Google Scholar 

  • Strock KE, Saros JE, Nelson SJ, Birkel SD, Kahl JS, McDowell WH (2016) Extreme weather years drive episodic changes in lake chemistry: implications for recovery from sulfate deposition and long-term trends in dissolved organic carbon. Biogeochemistry 127:353–365. https://doi.org/10.1007/s10533-016-0185-9

    Article  Google Scholar 

  • Strock KE, Theodore N, Gawley WG, Ellsworth AC, Saros JE (2017) Increasing dissolved organic carbon concentrations in northern boreal lakes: Implications for lake water transparency and thermal structure. J Geophys Res Biogeosci 122:1022–1035. https://doi.org/10.1002/2017JG003767

    Article  Google Scholar 

  • Wang L, Lu H, Liu J, Gu Z, Mingram J, Chu G, Li J, Rioual P, Negendank JFW, Han J, Liu T (2008) Diatom-based inference of variations in the strength of Asian winter monsoon winds between 17,500 and 6000 calendar years B.P. J Geophys Res 113:D21101. https://doi.org/10.1029/2008JD010145

    Article  Google Scholar 

  • Weyhenmeyer GA, Karlsson J (2009) Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54:2513–2519. https://doi.org/10.4319/lo.2009.54.6_part_2.2513

    Article  Google Scholar 

  • Weyhenmeyer GA, Willén E, Sonesten L (2004) Effects of an extreme precipitation event on water chemistry and phytoplankton in the Swedish Lake Mälaren. Boreal Environ Res 9:409–420

    Google Scholar 

  • Whitehead DR, Charles DF, Goldstein RA (1990) The PIRLA project (Paleoecological Investigation of Recent Lake Acidification): an introduction to the synthesis of the project. J Paleolimnol 3:187–194. https://doi.org/10.1007/BF00219458

    Article  Google Scholar 

  • Williamson CE, Stemberger RS, Morris DP, Frost TM, Paulsen SG (1996) Ultraviolet radiation in North American lakes: Attenuation estimates from DOC measurements and implications for plankton communities. Limnol Oceanogr 41:1024–1034. https://doi.org/10.4319/lo.1996.41.5.1024

    Article  Google Scholar 

  • Williamson CE, Overholt EP, Pilla RM, Leach TH, Brentrup JA, Knoll LB, Mette EM, Moeller RE (2015) Ecological consequences of long-term browning in lakes. Sci Rep 5:18666. https://doi.org/10.1038/srep18666

    Article  Google Scholar 

  • Zhang J, Hudson J, Neal R, Sereda J, Clair T, Turner M, Jeffries D, Dillon P, Molot L, Somers K, Hesslein R (2010) Long-term patterns of dissolved organic carbon in lakes across eastern Canada: Evidence of a pronounced climate effect. Limnol Oceanogr 55:30–42. https://doi.org/10.4319/lo.2010.55.1.0030

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Science Foundation Adaptation to Abrupt Climate Change IGERT program grant DGE-1144423 and a Schoodic Institute Research Fellowship. We are grateful for field, laboratory, and statistical assistance from Andrea Nurse, Benjamin Burpee, Shannon Wiggin, Suzanne McGowan, Amanda Klemmer, Tamara Levitsky, L. Brian Perkins, Adam Heathcote, and the University of Maine Physics Department. Peter Leavitt performed pigment analysis of Jordan Pond sediments. NPS data used in this project can be accessed through the NPS Integrated Resource Management Applications portal: https://irma.nps.gov/Portal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel A. Fowler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fowler, R.A., Warner, K.A., Gawley, W.G. et al. Paleolimnological comparison of algal changes in a clear-versus a brown-water lake over the last two centuries in the northeastern U.S.A. J Paleolimnol 67, 289–305 (2022). https://doi.org/10.1007/s10933-022-00233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-022-00233-0

Keywords

  • Dissolved organic carbon (DOC)
  • Water transparency
  • Diatoms
  • Algal ecology
  • Acid deposition
  • Climate change