Skip to main content

Advertisement

Log in

Differing limnological responses to late Holocene climate variability in the Cordillera Vilcanota, Peruvian Andes

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

In recent decades, climate change in Peru’s Cordillera Vilcanota has resulted in massive reductions to its cryosphere and the upslope migration of species and agriculture. Little, however, is known about the response of the region’s many lakes that support local biodiversity and supply water to downstream populations. We analyzed fossil diatom assemblages in dated sediment cores from three lakes with differing morphometry and catchment characteristics to document the limnological response to climate variability over the late Holocene. The study lakes contained similar dominant diatom taxa but recorded markedly different assemblage shifts over time. The two deeper lakes, Laguna Sibinacocha (zmax = 92 m) and Chaca Cocha (zmax = 18 m), contained diatom assemblages that oscillated in dominance between benthic fragilarioids (Staurosirella pinnata, Pseudostaurosira brevistriata) and the planktonic Discostella stelligera. The Chaca Cocha diatom record closely matched the mean state changes in climate inferred from independent proxy records, whereas the record from the glacially influenced Laguna Sibinacocha did not match independent records. In contrast, the shallow study site, Lado del Quelccaya (zmax = 5 m), recorded a complacent diatom profile dominated by benthic fragilarioids with negligible planktonic taxa. The disparate diatom trajectories among the study lakes reflect variations in morphometry and glacial influence and the assemblage shifts appear best explained by climate-driven alterations to thermal stratification. These data offer insight into the primary mechanisms driving limnological change in this region and how different lake types throughout the Andes may respond to future warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott MB, Wolfe BB, Wolfe AP, Seltzer GO, Aravena R et al (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeogr Palaeoclimatol Palaeoecol 194:123–138. https://doi.org/10.1016/s0031-0182(03)00274-8

    Article  Google Scholar 

  • Antoniades D, Hamilton PB, Douglas MSV, Smol JP (2008) The freshwater floras of Prince Patrick, Ellef Ringnes, and Northern Ellesmere Islands from the Canadian Arctic Archipelago. Iconogr Diatomol 17:1–649

    Google Scholar 

  • Baker PA, Seltzer GO, Fritz SC, Dunbar RB, Grove MJ, Tapia PM, Cross SL, Rowe HD, Broda JP (2001) The history of South American tropical precipitation for the past 25,000 years. Science 291:640–643

    Article  Google Scholar 

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JB, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 155–202

    Chapter  Google Scholar 

  • Beal SA, Kelly MA, Stroup JS, Jackson BP, Lowell TV, Tapia PM (2014) Natural and anthropogenic variations in atmospheric mercury deposition during the Holocene near Quelccaya Ice Cap, Peru. Glob Biogeochem Cycles 28:437–450. https://doi.org/10.1002/2013GB004780

    Article  Google Scholar 

  • Bird BW, Abbott MB, Vuille M, Rodbell DT, Stansell ND, Rosenmeier MF (2011) A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci USA 108:8583–8588

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Google Scholar 

  • Blais JM, Schindler DW, Muir DC, Sharp M, Donald D, Lafrenière M, Braekevelt E, Strachan WM (2001) Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio 7:410–415

    Article  Google Scholar 

  • Bräuning A (2009) Climate variability of the tropical Andes since the late Pleistocene. Adv Geosci 22:13–25

    Article  Google Scholar 

  • Bush MB, Hansen CS, Rodbell DT, Seltzer GO, Young KR et al (2005) A 17 000-year history of Andean climate and vegetation change from Laguna de Chochos. Peru J Quat Sci 20:703–714. https://doi.org/10.1002/jqs.983

    Article  Google Scholar 

  • Bustamante MG, Cruz FW, Vuille M, Apaéstegui J, Strikis N et al (2016) Holocene changes in monsoon precipitation in the Andes of NE Peru based on δ18O speleothem records. Quat Sci Rev 146:274–287

    Article  Google Scholar 

  • Cardozo AYV, Gomes DF, Mendes da Silva E, Duque SRE, Ch Rangel JO et al (2014) Holocene paleolimnological reconstruction of a high altitude Colombian tropical lake. Palaeogeogr Palaeoclimatol Palaeoecol 415:127–136

    Article  Google Scholar 

  • Cooper DJ, Wolf EC, Colson C, Vering W, Granda A, Meyer M (2010) Alpine peatlands of the Andes, Cajamarca, Peru. Arct Antarct Alp Res 42:19–33

    Article  Google Scholar 

  • Drenkhan F, Guardamino L, Huggel C, Frey H (2018) Current and future glacier and lake assessment in the deglaciating Vilcanota-Urubamba basin, Peruvian Andes. Glob Pan Change 169:105–118

    Article  Google Scholar 

  • Fortner SK, Mark BG, McKenzie JM, Bury J, Trierweiler A (2011) Elevated stream trace and minor element concentrations in the foreland of receding tropical glaciers. Appl Geochem 26:1792–1801

    Article  Google Scholar 

  • Fritz SC, Baker PA, Lowenstein TK, Seltzer GO, Rigsby CA (2004) Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quat Res 61:95–104

    Article  Google Scholar 

  • Giles MP, Michelutti N, Grooms C, Smol JP (2018) Long-term limnological changes in the Ecuadorian páramo: comparing the ecological responses to climate warming of shallow versus deep lakes. Freshw Biol 63:1316–1325

    Article  Google Scholar 

  • Glew JR, Smol JP, Last WM (2001) Sediment core collection and extrusion. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. 1. Basin analysis, coring and chronological techniques. Springer, New York, pp 73–105

    Google Scholar 

  • Halloy SRP, Seimon A, Yager K, Tupayachi Herrera A (2005) Multidimensional (climate, biodiversity, socio-economics, agriculture) context of changes in land use in the Vilcanota watershed, Peru. In: Spehn EM, Liberman Cruz M, Körner C (eds) Land use changes and mountain biodiversity. CRC Press, Boca Raton, pp 323–337

    Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308

    Article  Google Scholar 

  • Hillyer R, Valencia BG, Bush MB, Silman MR, Steinitz-Kannan M (2009) A 24,700-yr paleolimnological history from the Peruvian Andes. Quat Res 71:71–82

    Article  Google Scholar 

  • Juggins S (2007) C2: Software for Ecological and Palaeoecological Data Analysis and Visualisation, Version 1.5.1. Department of Geography, University of Newcastle, Newcastle Upon Tyne

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kanner LC, Burns SJ, Cheng H, Edwards RL, Vuille M (2013) High-resolution variability of the South American summer monsoon over the last seven millennia: insights from a speleothem record from the central Peruvian Andes. Quat Sci Rev 75:1–10

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) [Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae]. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) [Die Sübwasserflora von Mitteleuropa 2/2] [Book in German]. Gustav Fischer Verlag, Stuttgart

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Die Sübwasserflora von Mitteleuropa 2/3. [Book in German]. Gustav Fischer Verlag, Stuttgart

  • Krammer K, Lange-Bertalot H (1991b) [Bacillariophyceae 4. Teil: Achnanththaceae, Kritische Erganzungen zu Navicula (Lineolatae), und Gomphonema]. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds), [Die Sübwasserflora von Mitteleuropa 2/4] [Book in German]. Gustav Fischer Verlag, Stuttgart

  • Krammer K, Lange-H (1986) [Bacillariophyceae 1. Teil: Naviculaceae]. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) [Die Sübwasserflora von Mitteleuropa 2/1].[Book in German]. Gustav Fischer Verlag, Stuttgart

  • Labaj AL, Michelutti N, Smol JP (2017) Changes in cladoceran assemblages from tropical high mountain lakes during periods of recent climate change. J Plankton Res 39:211–219

    Google Scholar 

  • Labaj AL, Michelutti N, Smol JP (2018) Annual stratification patterns in tropical mountain lakes reflect altered thermal regimes in response to climate change. Fund Appl Limnol 191:267–275

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2003) Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Glob Planet Change 38:257–271

    Article  Google Scholar 

  • Michelutti N, Wolfe AP, Cooke CA, Hobbs WO, Vuille M, Smol JP (2015) Climate change forces new ecological states in tropical Andean lakes. PLoS ONE 10:e0115338

    Article  Google Scholar 

  • Michelutti N, Labaj A, Grooms C, Smol JP (2016) Equatorial mountain lakes show extended periods of thermal stratification with recent climate change. J Limnol 75:403–408

    Google Scholar 

  • Michelutti N, Tapia PM, Labaj AL, Grooms C, Smol JP (2019a) A limnological assessment of the diverse waterscape in the Cordillera Vilcanota, Peruvian Andes. Inland Waters 9:395–407

    Article  Google Scholar 

  • Michelutti N, Sowell P, Tapia PM, Grooms C, Polo M, Gambetta A, Ausejo C, Smol JP (2019b) A pre-Inca pot from underwater ruins discovered in an Andean lake provides a sedimentary record of marked hydrological change. Sci Rep 9:19193. https://doi.org/10.1038/s41598-019-55422-1

    Article  Google Scholar 

  • MINAM (2018) Diagnóstico Del Servicio Ecosistémico De Regulación Hídrica En La Cuenca Del Alto Urubamba, Cusco, Para El Usuario De Agua “Generadora Eléctrica Machu Picchu S.A.”, En El Marco De Una Iniciativa Merese, En El Ámbito De Influencia Del Tramo 2 Del Corredor Vial Interoceánico Sur, Cusco, Perú

  • Morales MS, Christie DA, Villalba R, Argollo J, Pacajes J, Silva JS, Alvarez CA, Llancabure JC, Soliz Gamboa CC (2012) Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings. Clim Past 8:653–666. https://doi.org/10.5194/cp-8-653-2012

    Article  Google Scholar 

  • Moser KA, Baron JS, Brahney J, Oleksy IA, Saros JE et al (2019) Mountain lakes: eyes on global environmental change. Glob Planet Change 178:77–95

    Article  Google Scholar 

  • Mosquera PV, Hampel H, Vazquez RF, Alonso M, Catalan J (2017) Abundance and morphometry changes across the high mountain lake-size gradient in the tropical Andes of Southern Ecuador. Water Resour Res 53:7269–7280. https://doi.org/10.1002/2017WR020902

    Article  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2006) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122

    Article  Google Scholar 

  • Neukom R, Luterbacher J, Villalba R, Küttel M, Frank D (2011) Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim Dyn 37:35–51

    Article  Google Scholar 

  • Rabatel A, Francou B, Soruco A, Gomez J, Càceres B, Ceballos JL, Basantes R, Vuille M, Sicart J-E, Huggel C et al (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7:81–102

    Article  Google Scholar 

  • Raven P (2011) Foreward. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE)

  • Reuter J, Stott L, Khider D, Sinha A, Cheng H, Edwards RL (2009) A new perspective on the hydroclimate variability in northern South America during the Little Ice Age. Geophys Res Lett 36:L21706. https://doi.org/10.1029/2009GL041051

    Article  Google Scholar 

  • Rodbell DT, Seltzer GO, Mark BG, Smith JA, Abbott MA (2008) Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion. Quat Sc Rev 27:1612–1626

    Article  Google Scholar 

  • Rühland KM, Smol JP, Pienitz R (2003) Ecology and spatial distributions of surface-sediment diatoms from 77 lakes in the subarctic Canadian treeline region. Can J Bot 81:57–73

    Article  Google Scholar 

  • Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2745

    Google Scholar 

  • Rühland KM, Paterson AM, Smol JP (2015) Diatom assemblage responses to warming: reviewing the evidence. J Paleolimnol 54:1–35

    Article  Google Scholar 

  • Salzmann N, Huggel C, Roher M, Silverio W, Mark BG, Burns P, Portocarrero C (2013) Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes. Cryosphere 7:103–118

    Article  Google Scholar 

  • Saros JE, Rose KC, Clow DW, Stephens VC, Nurse AB et al (2010) Melting alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environ Sci Technol 44:4891–4896

    Article  Google Scholar 

  • ScheerSoftware Solutions, Barry’s Bay, ON, Canada

  • Schmidt SK, Sobieniak-Wiseman C, Kageyama SA, Halloy RP, Schadt CW (2008) Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arct Antarct Alp Res 40:576–583

    Article  Google Scholar 

  • Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons JE (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Change Biol 13:288–299

    Article  Google Scholar 

  • Seimon TA, Seimon A, Yager K, Reider K, Delgado SP, Tupayachi A, Konecky B, McAloose D, Halloy S (2017) Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: results from a decade of study. Ecol Evol 2016:1–14

    Google Scholar 

  • Sienkiewicz E, Gasiorowski M, Migala K (2017) Unusual reaction of diatom assemblage on climate changes during the last millennium: a record from Spitsbergen lake. J Paleolimnol 58:73–87

    Article  Google Scholar 

  • Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Verein Limnol 23:837–844

    Google Scholar 

  • Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ et al (2005) Climate-driven regime shifts in the biological communities of Arctic lakes. Proc Natl Acad Sci 102:4397–4402. https://doi.org/10.1073/pnas.0500245102

    Article  Google Scholar 

  • Sommaruga R (2015) When glaciers and ice sheets melt: consequences for planktonic organisms. J Plankton Res 37:509–518

    Article  Google Scholar 

  • Stansell ND, Rodbell DT, Abbott MB, Mark BG (2013) Proglacial lake sediment records of Holocene climate change in the western Cordillera of Peru. Quat Sci Rev 70:1–14

    Article  Google Scholar 

  • Stone JR, Saros JE, Spanbauer TL (2019) The influence of fetch on the Holocene thermal structure of Hidden lake, Glacier National Park. Front Earth Sci 7:28. https://doi.org/10.3389/feart.2019.00028

    Article  Google Scholar 

  • Stroup JS, Kelly MA, Lowell TV, Smith CA, Beal SA et al (2015) Late Holocene fluctuations of Quelccaya Ice Cap, Peru, registered by nearby lake sediments. J Quat Sci 30:830–840

    Article  Google Scholar 

  • Tapia PM (2008) Diatoms as bioindicators of pollution in the Mantaro River, Central Andes, Peru. Int J Environ Health 2:82–91. https://doi.org/10.1504/IJENVH.2008.018674

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Zagorodnov VS, Howat IM, Mikhalenko VN, Lin P-N (2013) Annually resolved ice core records of tropical climate variability over the past ~ 1800 years. Science 24:945–950

    Article  Google Scholar 

  • Vuille M, Burns SJ, Taylor BL, Cruz FW, Bird BW (2012) A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim Past 8:1309–1321

    Article  Google Scholar 

  • Winder M, Hunter DA (2008) Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156:179–192

    Article  Google Scholar 

  • Winder M, Reuter JE, Schadlow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B 276:427–435

    Article  Google Scholar 

  • Wolin JA, Stone JR (2010) Diatoms as indicators of water-level change in freshwater lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge, pp 174–185

    Chapter  Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Climate 11:1020–1040

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a Natural Sciences and Engineering Research Council of Canada Grant to JPS. We thank Felix Benjamín Vicencio, Teodoro Huaney Torres, Leo Camones Gamarra, and César Loli Chinchay for fieldwork support. C Meyer-Jacob assisted with age-depth modelling. Preston Sowell kindly provided the digital image in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal Michelutti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelutti, N., Tapia, P.M., Grooms, C. et al. Differing limnological responses to late Holocene climate variability in the Cordillera Vilcanota, Peruvian Andes. J Paleolimnol 64, 121–135 (2020). https://doi.org/10.1007/s10933-020-00127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-020-00127-z

Keywords

Navigation