Post-glacial lake development and paleoclimate in the central Hudson Bay Lowlands inferred from sediment records

Abstract

We compile a multi-proxy Holocene record from North Raft Lake located in the sub-Arctic Hudson Bay Lowlands, Canada. Specifically, we use subfossil chironomid, diatom, and pollen assemblages, non-pollen palynomorphs, sedimentary chlorophyll a, magnetic susceptibility, and organic matter content to characterize terrestrial and lake processes and to track paleoclimate following land emergence from the postglacial Tyrrell Sea. Following recession of the Tyrrell Sea (~ 6600 cal yr BP), pollen assemblages are indicative of a salt marsh environment with the establishment of an opportunistic chironomid assemblage. By ~ 6200 cal yr BP, isostatic uplift reduced the marine influence and pollen and palynomorph assemblage changes indicate that North Raft Lake became a closed-basin freshwater system. At this time, pollen assemblages signify the establishment of a forested peatland dominated by Picea, and chironomid taxa indicate warming water temperatures. The North Raft Lake pollen/palynomorph record captures a warm and moist mid-Holocene (Holocene Thermal Maximum) period starting ~ 6200 cal yr BP. During this period, an increase in pollen concentration and a shift to higher abundances of Larix indicate watershed-scale succession and enhanced local ecosystem productivity. Shifts in chironomid taxa at ~ 5000 cal yr BP are indicative of abrupt limnological changes suggesting wet conditions that caused an expansion of littoral habitat. The gradual transition into Neoglacial cooling is signaled by an increase in the abundances of cold-stenothermal chironomid taxa and a small decline in pollen-reconstructed temperatures. Marked changes occur in the mid-twentieth century with the appearance of diatoms in notable abundances for the first time in the lake’s sedimentary record, the arrival of new chironomid littoral taxa, and unprecedented increases in sedimentary chlorophyll a and organic matter content. Throughout the North Raft Lake Holocene sediment record, the pollen trends suggest slow centennial-scale changes in temperature and precipitation, whereas chironomid assemblages indicate abrupt mid-Holocene and twentieth century limnological changes, stressing that biota in lakes of the Hudson Bay Lowlands may change substantially under future scenarios of global climate warming.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aagaard K (1986) The chironomid fauna of North Norwegian lakes, with a discussion on methods of community classification. Holarctic Ecol 9:1–12

    Google Scholar 

  2. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 1: basin analysis, coring, and chronological techniques. Kluwer, Dordrecht, pp 171–203

    Google Scholar 

  3. Bennett KD (1996) Determining the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  4. Birks HJB, Felde VA, Bjune AE, Grytnes J-A, Seppä H, Giesecke T (2016) Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev Palaeobot Palynol 228:1–25

    Article  Google Scholar 

  5. Blaauw M (2010) Methods and core for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  6. Bouchard F, Turner KW, MacDonald LA, Deakin C, White H, Farquharson N, Medeiros AS, Wolfe BB, Hall RI, Pienitz R, Edwards TWD (2013) Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geograph Res Lett 40:6112–6117

    Article  Google Scholar 

  7. Brazeau ML, Poulain AJ, Paterson AM, Keller W, Sanei H, Blais JM (2013) Recent changes in mercury deposition and primary productivity inferred from sediments of lakes from the Hudson Bay Lowlands, Ontario, Canada. Environ Pollut 173:52–60

    Article  Google Scholar 

  8. Brooks SJ (1997) The response of Chironomidae (Insecta: Diptera) assemblages to Late-glacial climatic change in Krakenes Lake, Western Norway. Quat Proceed 5:49–58

    Google Scholar 

  9. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of PalaeArctic Chironomidae larvae in palaeoecology. Quat Res Assoc Tech Guide 10:1–276

    Google Scholar 

  10. Bunbury J, Gajewski K (2009) Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quat Sci Rev 28:354–369

    Article  Google Scholar 

  11. Bunbury J, Finkelstein SA, Bollmann J (2012) Holocene hydro-climatic change and effects on carbon accumulation inferred from a peat bog in the Attawapiskat River watershed, Hudson Bay Lowlands, Canada. Quat Res 78:275–284

    Article  Google Scholar 

  12. Camill P, Umbanhowar CE Jr, Geiss C, Hobbs WO, Edlund MB, Shinneman AC, Dorale JA, Lynch J (2012) Holocene climate change and landscape development from a low-Arctic tundra lake in the western Hudson Bay region of Manitoba, Canada. J Paleolimnol 48:175–192

    Article  Google Scholar 

  13. Cwynar LC, Burden E, McAndrews JH (1979) Inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Can J Earth Sci 16:1115–1120

    Article  Google Scholar 

  14. Dalton AS, Väliranta M, Barnett PJ, Finkelstein SA (2017) Pollen and macrofossil-inferred paleoclimate at the Ridge Site, Hudson Bay Lowlands, Canada: Evidence for a dry climate and significant recession of the Laurentide Ice Sheet during Marine Isotope Stage 3. Boreas 46:388–401

    Article  Google Scholar 

  15. Dredge LA, Cowan WR (1989) Quaternary geology of the southwestern Canadian Shield. In: Fulton RJ (ed) Quaternary geology of Canada and Greenland: Geological Survey of Canada, Geology of Canada, no. 1, pp 214–249

  16. Dyke AS (2004) An outline of North American deglaciation with emphasis on central and northern Canada. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations---extent and chronology, Part II. Elsevier, Amsterdam, pp 373–424

    Google Scholar 

  17. Dyke AS, Moore A, Robertson L (2003) Deglaciation of North America. Open File 1574. Geological Survey of Canada, Ottawa

    Google Scholar 

  18. Fallu M-A, Pienitz R, Walker IR, Lavoie M (2005) Paleolimnology of a shrub-tundra lake and response of aquatic and terrestrial indicators to climatic change in arctic Quebec, Canada. Palaeogeogr Palaeoclim Palaeoecol 215:183–203

    Article  Google Scholar 

  19. Finney BP, Rühland KM, Smol JP, Fallu M-A (2004) Paleolimnology of North American Subarctic. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic lakes. Springer, Dordrecht, pp 269–318

    Google Scholar 

  20. Fortin M-C, Medeiros AS, Gajewski K, Barley EM, Larocque-Tobler I, Porinchu DF, Wilson SE (2015) Chironomid-environment relations in northern North America. J Paleolimnol 54:223–237

    Article  Google Scholar 

  21. Friel CE, Finkelstein SA, Davis AM (2014) Relative importance of hydrological and climatic controls on Holocene paleoenvironments inferred using diatom and pollen records from a lake in the central Hudson Bay Lowlands, Canada. Holocene 24:295–306

    Article  Google Scholar 

  22. Fægri K, Iversen J (1989) Textbook of pollen analysis, 4th ed. Wiley, Chichester

    Google Scholar 

  23. Gajewski K (2015) Quantitative reconstruction of Holocene temperatures across the Canadian Arctic and Greenland. Glob Planet Chan 128:14–23. https://doi.org/10.1016/j.gloplacha.2015.02.003

    Article  Google Scholar 

  24. Gajewski K, Bouchard G, Wilson SE, Kurek J, Cwynar LC (2005) Distribution of Chironomidae (Insect: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549:131–143

    Article  Google Scholar 

  25. Glaser PH, Hansen BCS, Siegel DI, Reeve AS, Morin PJ (2004) Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada. J Ecol 92:1036–1053

    Article  Google Scholar 

  26. Glew JR (1988) A portable extruding device for close interval sectioning of unconsolidated core samples. J Paleolimnol 1:235–239

    Article  Google Scholar 

  27. Glew JR (1989) A new trigger mechanism for sediment samplers. J Paleolimnol 2:241–243

    Article  Google Scholar 

  28. Grimm EC (1987) CONISS: A FORTRAN-77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers Geosci 13:13–35

    Article  Google Scholar 

  29. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  30. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  31. Hobbs WO, Edlund MB, Umbanhowar CE Jr, Camill P, Lynch JA, Geiss C, Stefanova V (2017) Holocene evolution of lakes in the forest-tundra biome of northern Manitoba, Canada. Quat Sci Rev 159:116–138

    Article  Google Scholar 

  32. Hochheim KP, Barber DG (2014) An update on the ice climatology of the Hudson Bay system. Arct Antarct Alp Res 46:66–83

    Article  Google Scholar 

  33. Holmquist JR, MacDonald GM, Gallego-Sala A (2014) Peatland initiation, carbon accumulation, and 2 ka depth in the James Bay Lowland and adjacent regions. Arct Antarct Alp Res 46:19–39

    Article  Google Scholar 

  34. Jones VJ, Solovieva N, Self AE, McGowan S, Rosen P, Salonen JS, Seppa H, Valiranta M, Parrott E, Brooks SJ (2011) The influence of Holocene tree-line advance and retreat on an arctic lake ecosystem: a multi-proxy study from Kharinei Lake, North Eastern European Russia. J Paleolimnol 46:123–137

    Article  Google Scholar 

  35. Juggins S (2016) Rioja: an R package for the analysis of Quaternary science data, Version 0.9-9

  36. Kapp RO, Davis OK, King JE (2000) Ronald O. Kapp’s Pollen and Spores, 2nd ed. American Association of Stratigraphic Palynologists Foundation Publication, College Station

    Google Scholar 

  37. Karmakar M, Kurek J, Haig H, Cumming BF (2014) Consensus among multiple trophic levels during high- and low-water stands over the last two millennia in a northwest Ontario lake. Quat Res 81:251–259

    Article  Google Scholar 

  38. Kaufman DS, Ager TA, Anderson NJ, Anderson PM, Andrews JT, Bartlein PJ, Brubaker LB, Coats LL, Cwynar LC, Duvall ML, Dyke AS, Edwards ME, Eisner WR, Gajewski K, Geirsdóttir A, Hu FS, Jennings AE, Kaplan MR, Kerwin MW, Lozhkin AV, MacDonald GM, Miller GH, Mock CJ, Oswald WW, Otto-Bliesner BL, Porinchu DF, Rühland K, Smol JP, Steig EJ, Wolfe BB (2004) Holocene thermal maximum in the western Arctic (0–180oW). Quat Sci Rev 23:529–560

    Article  Google Scholar 

  39. Kaufman DS, Axford Y, Scott Anderson R, Lamoureux SF, Schindler DE, Walker IR, Werner A (2012) A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska. J Paleolimnol 48:9–26

    Article  Google Scholar 

  40. Kerwin MW, Overpeck JT, Webb RS, Anderson KH (2004) Pollen-based summer temperature reconstructions for the eastern Canadian boreal forest, subarctic, and Arctic. Quat Sci Rev 23:1901–1924

    Article  Google Scholar 

  41. Korhola A, Olander H, Blom T (2000) Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. J Paleolimnol 24:43–54

    Article  Google Scholar 

  42. Larocque I (2001) How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr Palaeoclimat Palaeoecol 172:133–142

    Article  Google Scholar 

  43. Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322

    Article  Google Scholar 

  44. Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can J Fish Aquat Sci 63:1286–1297

    Article  Google Scholar 

  45. Lavoie C, Payette S (1996) The long-term stability of the Boreal forest limit in subarctic Quebec. Ecology 77:1226–1233

    Article  Google Scholar 

  46. Loisel J, Garneau M (2010) Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multi-proxy archives. Palaeogeogr Palaeocl 291:493–533

    Article  Google Scholar 

  47. MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246

    Article  Google Scholar 

  48. Martini IP (2006) Chap. 3: The cold-climate peatlands of the Hudson Bay Lowland, Canada: Brief overview of recent work. In: Martini IP, Martinez Cortizas A, Chesworth W (eds) Developments in earth surface processes. Elsevier, Amsterdam, pp 53–84

    Google Scholar 

  49. McAndrews JH, Campbell ID (1993) 6 ka mean July temperature in eastern Canada from Bartlein and Webb's (1985) pollen transfer functions: comments and illustrations. In: Telka A (ed) Proxy climate data and models of the six thousand years before present time interval: the Canadian perspective, Canadian Global Change Program Incidental Report Series IR93-3. The Royal Society of Canada, Ottawa, pp 22–25

    Google Scholar 

  50. McAndrews JH, Berti AA, Norris G (1973) Key to the quaternary pollen and spores of the Great Lakes region. Royal Ontario Museum, Toronto

    Book  Google Scholar 

  51. McAndrews JH, Riley JL, Davis AM (1982) Vegetation history of the Hudson Bay lowland: a postglacial pollen diagram from the Sutton Ridge. Le Naturaliste Canadien 109:597–608

    Google Scholar 

  52. McKenney DW, Pedlar JH, Papadopol P, Hutchinson MF (2006) The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric For Meteorol 138:69–81

    Article  Google Scholar 

  53. Medeiros AS, Friel CE, Finkelstein SA, Quinlan R (2012) A high resolution multi-proxy record of pronounced recent environmental change at Baker Lake, Nunavut. J Paleolimnol 47:661–676

    Article  Google Scholar 

  54. Michelutti N, Smol JP (2016) Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253–265

    Article  Google Scholar 

  55. Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner J (2005) Recent primary production increases in arctic lakes. Geophys Res Lett 32:L19715

    Article  Google Scholar 

  56. Michelutti N, Blais JM, Cumming BF, Paterson AM, Rühland K, Wolfe AP, Smol JP (2010) Do spectrally inferred determinations of chlorophyll a reflect trends in lake trophic status? J Paleolimnol 43:205–217

    Article  Google Scholar 

  57. Millet L, Giguet-Covex C, Verneaux V, Druart J-C, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J Paleolimnol 44:963–978

    Article  Google Scholar 

  58. Miousse L, Bhiry N, Lavoie M (2003) Isolation and water-level fluctuations of Lake Kachishayoot, Northern Quebec, Canada. Quat Res 60:149–161

    Article  Google Scholar 

  59. Morris PJ, Swindles GT, Valdes PJ, Ivanovic RF, Gregoire LJ, Smith MW, Tarasov L, Haywood AM, Bacon KL (2018) Global peatland initiation driven by regionally synchronous warming. Proc Natl Acad Sci 115:4851–4856

    Article  Google Scholar 

  60. Mousavi SK (2002) Boreal chironomid communities and their relations to environmental factors—the impact of lake depth, size and acidity. Boreal Environ Res 7:63–75

    Google Scholar 

  61. Norton SA, Perry RH, Saros JE, Jacobson GL Jr, Fernandez IJ, Kopacek J, Wilson TA, SanClements MD (2011) The controls on phosphorus availability in a Boreal lake ecosystem since deglaciation. J Paleolimnol 46:107–122

    Article  Google Scholar 

  62. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017) vegan: community ecology package. R package version 2.4-2. https://CRAN.R-project.org/package=vegan

  63. Overpeck JT, Webb T III, Prentice IC (1985) Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108

    Article  Google Scholar 

  64. Packalen MS, Finkelstein SA (2014) Quantifying Holocene variability in carbon uptake and release since peat initiation in the Hudson Bay Lowlands, Canada. Holocene 24:1063–1074

    Article  Google Scholar 

  65. Packalen MS, Finkelstein SA, McLaughlin JW (2014) Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation. Nat Commun 5:4078

    Article  Google Scholar 

  66. Packalen MS, Finkelstein SA, McLaughlin JW (2016) Climate and peat type in relation to spatial variation of the peatland carbon mass in the Hudson Bay Lowlands, Canada. J Geophys Res-Biogeo 121:1104–1117

    Article  Google Scholar 

  67. Paterson AM, Keller W, Rühland KM, Jones FC, Winter JG (2014) An exploratory survey of summer water chemistry and plankton communities in lakes near the Sutton River, Hudson Bay Lowlands, Ontario, Canada. Arct Antarct Alp Res 46:121–138

    Article  Google Scholar 

  68. Quinlan R, Smol JP (2001a) Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshw Biol 46:1529–1551

    Article  Google Scholar 

  69. Quinlan R, Smol JP (2001b) Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J Paleolimnol 26:327–342

    Article  Google Scholar 

  70. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Lawrence Edwards R, Friedrich M, Grootes P, Gulderson TP, Haflidason H, Hajdas I, Hatte C, Heaton TJ, Hoffman DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon SW, Staff RA, Turney CSM, van der Plicht J (2013) Intcal 13 and marine13 radiocarbon age calibration curves 0–50,000 years cal. BP Radiocarbon 55:1869–1887

    Article  Google Scholar 

  71. Renssen H, Seppä H, Heiri O, Roche DM, Goosse H, Fichefet T (2009) The spatial and temporal complexity of the Holocene thermal maximum. Nat Geosci 2:411–414

    Article  Google Scholar 

  72. Rolland N, Larocque I, Francus P, Pienitz R, Laperrière L (2008) Holocene climate inferred from biological (Diptera: Chironomidae) analyses in a Southampton Island (Nunavut, Canada) Lake. Holocene 18:229–241

    Article  Google Scholar 

  73. Ross M, Utting DJ, Lajeunesse P, Kosar KGA (2012) Early Holocene deglaciation of northern Hudson Bay and Foxe Channel constrained by new radiocarbon ages and marine reservoir correction. Quat Res 78:82–94

    Article  Google Scholar 

  74. Rouse WR (1991) Impacts of Hudson Bay on the terrestrial climate of the Hudson Bay Lowlands. Arct Alp Res 23:24–30

    Article  Google Scholar 

  75. Rühland K, Smol JP (2005) Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeogr Palaeoc 226:1–16

    Article  Google Scholar 

  76. Rühland KM, Paterson AM, Keller W, Michelutti N, Smol JP (2013) Global warming triggers the loss of a key Arctic refugium. Proc R Soc B 280:1887

    Article  Google Scholar 

  77. Rühland KM, Hargan KE, Jeziorski A, Paterson AM, Keller W, Smol JP (2014) A multi-trophic exploratory survey of recent environmental change using lake sediments in the Hudson Bay Lowlands, Ontario, Canada. Arct Antarct Alp Res 46:139–158

    Article  Google Scholar 

  78. Rühland KM, Paterson AM, Smol JP (2015) Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–135

    Article  Google Scholar 

  79. Sandgren P, Snowball I (2001) Application of mineral magnetic techniques to paleolimnology. In: Last WM, Smol JP (ds) Tracking environmental change using lake sediments, volume 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 217–238

    Google Scholar 

  80. Saulnier-Talbot M, Pienitz R (2010) Postglacial chironomid assemblage succession in northernmost Ungava Peninsula, Canada. J Quat Sci 25:203–213

    Article  Google Scholar 

  81. Sawada M, Gajewski K, deVernal A, Richard P (1999) Comparison of marine and terrestrial Holocene climates in eastern North America. Holocene 9:267–278

    Article  Google Scholar 

  82. Schelske CL, Peplow A, Brenner M, Spencer CN (1994) Low-background gamma counting: applications for 210Pb dating of sediments. J Paleolimnol 10:115–128

    Article  Google Scholar 

  83. Simpson GL (2007) Analogue methods in palaeoecology: using the analogue package. J Statistical Software 22:1–29

    Article  Google Scholar 

  84. Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Wiley-Blackwell, New York

    Google Scholar 

  85. Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climatic change in the Arctic using lake sediments. Front Ecol Environ 5:466–474

    Article  Google Scholar 

  86. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland KM, Sorvari S, Antoniades D, Brooks SJ, Fallu MA, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402

    Article  Google Scholar 

  87. Solovieva N, Klimaschewski A, Self AE, Jones VJ, Andren E, Andreev AA, Hammarlund D, Lepskaya EV, Nazarova L (2015) The Holocene environmental history of a small coastal lake on the north-eastern Kamchatka Peninsula. Glob Planet Change 134:55–66

    Article  Google Scholar 

  88. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen spores 13:615–621

    Google Scholar 

  89. United States Geological Survey's Center for Earth Resources Observation and Science (EROS) (2010) 30 arc-second DEM of North America, https://databasin.org/datasets/d2198be9d2264de19cb93fe6a380b69c.

  90. Viau AE, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330

    Article  Google Scholar 

  91. Vincent WF, Laurion I, Pienitz R, Walter Anthony KM (2013) Climate impacts on Arctic lake ecosystems. In: Goldman CR, Kumagai M, Robarts RD (eds) Climatic change and global warming of inland waters: impacts and mitigation for ecosystems and societies. Wiley, New York, pp 27–42

    Google Scholar 

  92. Walker IR, MacDonald GM (1995) Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct Alp Res 27:258–263

    Article  Google Scholar 

  93. Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Volume 4: zoological indicators. Kluwer, Dordrecht, pp 43–66

    Google Scholar 

  94. Warner BG (1990) Plant macrofossils. In: Warner BG (ed) Methods of quaternary ecology. Geoscience Canada Reprint Series 5. Geological Association of Canada, St John’s, pp 53–63

    Google Scholar 

  95. Whitmore J, Gajewski K, Sawada M, Williams JW, Shuman B, Bartlein PJ, Minckley T, Viau AE, Webb TIII, Anderson PM, Brubaker LB (2005) North American and Greenland modern pollen data for multi-scale paleoecological and paleoclimatic applications. Quat Sci Rev 24:1828–1848

    Article  Google Scholar 

  96. Wiederholm T (1983) Chironomidae of the Holarctic region. Keys and diagnosis. Part 1. Larvae. Entomol Scand 19:1–457

    Google Scholar 

  97. Yu ZC (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this paper in memory of Alice Telka, founder of Paleotec Services, and thank her for her careful work in preparing samples for radiocarbon analyses. We thank Albert and Gilbert Chookomolin for fieldwork guidance and insights into the Hudson Bay Lowlands region; Dr. Joan Bunbury and Shannon MacPhee for fieldwork assistance; Hearst Air, particularly pilots Georges and Mike Veilleux, for their first-rate air transport service in this remote region; the staff at the Ontario Ministry of the Environment, Conservation and Parks’ Dorset Environmental Science Centre for chemical analyses and database support; and Dr. Joshua Kurek for assistance with chironomid methodology and taxonomy. This work was supported by: Ontario Ministry of the Environment, Conservation and Parks through the Climate Change and Multiple Stressor Research Program at Laurentian University, the W. Garfield Weston Foundation Fellowship from the Wildlife Conservation Society-Canada (to K. Hargan), the Northern Science Training Program (Polar Knowledge Canada), and the Natural Sciences and Engineering Research Council (NSERC) of Canada (to S. Finkelstein and J. Smol). Comments from two anonymous reviewers were appreciated and helped to improve this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Hargan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hargan, K.E., Finkelstein, S.A., Rühland, K.M. et al. Post-glacial lake development and paleoclimate in the central Hudson Bay Lowlands inferred from sediment records. J Paleolimnol 64, 25–46 (2020). https://doi.org/10.1007/s10933-020-00119-z

Download citation

Keywords

  • Hudson Bay Lowlands
  • Paleoclimate
  • Chironomids
  • Pollen
  • Modern analog technique
  • Lake sediments
  • Boreal peatlands
  • Holocene Thermal Maximum
  • Neoglacial cooling