Skip to main content

DNA metabarcoding reveals modern and past eukaryotic communities in a high-mountain peat bog system

Abstract

Peat bogs located in high mountains are suitable places to study local environmental responses to climate variability. These ecosystems host a large number of eukaryotes with diverse taxonomic and functional diversity. We carried out a metabarcoding study using universal 18S and COI markers to explore the composition of past and present eukaryotic communities of a Pyrenean peat bog ecosystem. We assessed the molecular biodiversity of four different moss micro-habitats along a flood gradient in the lentic Bassa Nera system (Central Pyrenees). Five samples collected from different sediment depths at the same study site were also analysed, to test the suitability of these universal markers for studying paleoecological communities recovered from ancient DNA and to compare the detected DNA sequences to those obtained from the modern community. We also compared the information provided by the sedimentary DNA to the reconstruction from environmental proxies such as pollen and macro-remains from the same record. We successfully amplified ancient DNA with both universal markers from all sediment samples, including the deepest one (~ 10,000 years old). Most of the metabarcoding reads obtained from sediment samples, however, were assigned to living edaphic organisms and only a small fraction of those reads was considered to be derived from paleoecological communities. Inferences from ancient sedimentary DNA were complementary to the reconstruction based on pollen and macro-remains, and the combined records reveal more detailed information. This molecular study yielded promising findings regarding the diversity of modern eukaryotic peat bog communities. Nevertheless, even though information about past communities could be retrieved from sediment samples, preferential amplification of DNA from living communities is a caveat for the use of universal metabarcoding markers in paleoecology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alsos IG, Lammers Y, Yoccoz NG, Jørgensen T, Sjögren P, Gielly L, Edwards ME (2018) Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13(4):e0195403

    Google Scholar 

  2. Andersen R, Chapman S, Artz R (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994. https://doi.org/10.1016/j.soilbio.2012.10.003

    Article  Google Scholar 

  3. Anderson-Carpenter L (2011) Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol Biol 11:30

    Google Scholar 

  4. Anslan S, Tedersoo L (2015) Performance of cytochrome c oxidase subunit I (COI), ribosomal DNA large subunit (LSU) and Internal Transcribed Spacer 2 (ITS2) in DNA barcoding of Collembola. Eur J Soil Biol 69:1–7

    Google Scholar 

  5. Asemaninejad A, Thorn R, Lindo Z (2017) Vertical distribution of fungi in hollows and hummocks of boreal peatlands. Fungal Ecol 27:59–68

    Google Scholar 

  6. Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Gemi J, Edwards M, Willersley E, Gussarova G, Taberlet P, Haile J, Brochmann C (2013) Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189

    Google Scholar 

  7. Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016) obitools: a unix-inspired software package for DNA metabarcoding. Mol Ecol 16(1):176–182

    Google Scholar 

  8. Cambra J (2015) Micro-scale distribution of algae in a Pyrenean peat-bog, Spain. Hidrobiológica 25:213–222

    Google Scholar 

  9. Cañellas-Boltà N, Rull V, Vigo J, Mercadé A (2009) Modern pollen-vegetation relationships along an altitudinal transect in the central Pyrenees (southwestern Europe). Holocene 19:1185–1200

    Google Scholar 

  10. Capo E, Debroas D, Arnaud F, Domaizon I (2015) Is planktonic diversity well recorded in sedimentary DNA? Toward the reconstruction of past protistan diversity. Microb Ecol 70:865–875

    Google Scholar 

  11. Capo E, Debroas D, Arnaud F, Guillemot T, Bichet V, Millet L, Lejzerowicz F (2016) Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Mol Ecol 25:5925–5943

    Google Scholar 

  12. Capo E, Debroas D, Arnaud F, Perga ME, Chardon C, Domaizon I (2017) Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ Microbiol 19:2873–2892

    Google Scholar 

  13. Carrillo E, Brugués M, Carreras J, Cros RM, Ferré A, Ninot JM, Pérez-Haase A, Ruiz E (2008) Singularitat de la vegetació de les reserves integrals de Trescuro i d’Aiguamòg. In: Jornades sobre recerca al Parc Nacional d’Aigüestortes i Estany de Sant Maurici. 25–27 October. Vall de Boí, Barruera, pp 177–192

  14. Charman D (2002) Peatlands and environmental change. Wiley, Chichester

    Google Scholar 

  15. Coolen MJ, Shtereva G (2009) Vertical distribution of metabolically active eukaryotes in the water column and sediments of the Black Sea. FEMS Microbiol Ecol 70:525–539

    Google Scholar 

  16. Domaizon I, Winegardner A, Capo E, Gauthier J, Gregory-Eaves I (2017) DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J Paleolimnol 58:1–21

    Google Scholar 

  17. Ellison AM (2006) Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol 8:740–747

    Google Scholar 

  18. Epp LS, Boessenkool S, Bellemain EP, Haile J, Esposito A, Riaz T, Erseus C, Gusarov VI, Edwards ME, Johnsen A, Stenøien HK (2012) New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol 21:1821–1833

    Google Scholar 

  19. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35:167–176

    Google Scholar 

  20. Garcés-Pastor S, Cañellas-Boltà N, Clavaguera A, Calero MA, Vegas-Vilarrúbia T (2016) Vegetation shifts, human impact and peat bog development in Bassa Nera pond (Central Pyrenees) during the past millennium. Holocene 27:553–565

    Google Scholar 

  21. Garcés-Pastor S, Cañellas-Boltà N, Pèlachs A, Soriano JM, Pérez-Obiol R, Pérez-Haase A, Calero MA, Andreu O, Escolà N, Vegas-Vilarrúbia T (2017) Environmental history and vegetation dynamics in response to climate variations and human pressure during the Holocene in Bassa Nera, Central Pyrenees. Palaeogeogr Palaeocl 479:48–60

    Google Scholar 

  22. Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol 13:851–861

    Google Scholar 

  23. Godwin H (1981) The archives of the peat bogs. Cambridge University Press, Cambridge

    Google Scholar 

  24. Guardiola M, Uriz MJ, Taberlet P, Coissac E, Wangensteen OS, Turon X (2015) Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS ONE 10:e0139633

    Google Scholar 

  25. Guardiola M, Wangensteen O, Taberlet P, Coissac E (2016) Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4:e2807

    Google Scholar 

  26. Harder CB, Rønn R, Brejnrod A, Bass D, Al-Soud WA, Ekelund F (2016) Local diversity of heathland Cercozoa explored by in-depth sequencing. ISME J 10:2488

    Google Scholar 

  27. Jersabek C, Brancelj A, Stoch F, Schabetsberger R (2001) Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia 453:309–324

    Google Scholar 

  28. Jørgensen T, Haile J, Möller P, Andreev A (2012) A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability. Mol Ecol 21:1989–2003

    Google Scholar 

  29. Lejzerowicz F, Esling P, Majewski W, Szczucinski W, Decelle J, Obadia C, Martines Arbizu P, Pawlowski J (2013a) Ancient DNA complements microfossil record in deepsea subsurface sediments. Biol Lett 9:20130283. https://doi.org/10.1098/rsbl.2013.0283

    Article  Google Scholar 

  30. Lejzerowicz F, Voltsky I, Pawlowski J (2013b) Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach. Deep Sea Res Part II 86:214–220

    Google Scholar 

  31. Mann M (2002) The value of multiple proxies. Science 297:1481–1482

    Google Scholar 

  32. Mauquoy D, Hughes P, van Geel B (2010) A protocol for plant macrofossil analysis of peat deposits. Mires Peat 7:1–5

    Google Scholar 

  33. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Blackwell, Oxford

    Google Scholar 

  34. Múrria C, Väisänen LOS, Somma S, Wangensteen OS, Arnedo MA, Prat N (2019) Towards an Iberian DNA barcode reference library of freshwater macroinvertebrates and fishes. Limnetica (in press)

  35. Ninyerola M, Pons X, Roure JM (2003) Atles Climàtic Digital de Catalunya. Universitat Autònoma de Barcelona, Barcelona

    Google Scholar 

  36. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) vegan: community ecology package. R package version 2.5-3

  37. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Google Scholar 

  38. Pansu J, Giguet-Covex C, Ficetola G, Gielly L, Boyer F, Zinger L, Choler P (2015) Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Mol Ecol 24:1485–1498

    Google Scholar 

  39. Parducci L, Väliranta M, Salonen JS, Ronkainen T, Matetovici I, Fontana SL, Eskola T, Sarala P, Suyama Y (2015) Proxy comparison in ancient peat sediments: pollen, macrofossil and plant DNA. Philos Trans R Soc B 370:20130382

    Google Scholar 

  40. Parducci L, Bennett K, Ficetola G, Alsos I, Suyama Y, Wood JR, Pedersen MW (2017) Ancient plant DNA in lake sediments. New Phytol 214:924–942

    Google Scholar 

  41. Pawlowski J, Holzmann M (2014) A plea for DNA barcoding of foraminifera. J Foramin Res 44:62–67

    Google Scholar 

  42. Pawlowski J, Esling P, Lejzerowicz F, Cedhagen T, Wilding TA (2014) Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Mol Ecol 14:1129–1140

    Google Scholar 

  43. Pedersen M, Ginolhac A, Orlando L, Olsen J, Andersen K, Holm J, Kjær KH (2013) A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. Quat Sci Rev 75:161–168

    Google Scholar 

  44. Pèlachs A, Pérez-Obiol R, Soriano JM, Pérez-Haase A (2016) Dinàmica de la vegetació, contaminació ambiental i incendis durant els últims 10.000 anys a la Bassa Nera (Val d’Aran). X Jornades sobre Recerca al Parc Nacional d’Aigüestortes i Estany de Sant Maurici. Vall de Boí, Barruera, pp 75–87

  45. Pérez-Haase A, Ninot JM (2006) Caracterització florística i ecològica de les molleres de la Nassa Nera (Aiguamòg). VII Jornades sobre Recerca al Parc Nacional d’Aigüestortes i Estany de Sant Maurici, Generalitat de Catalunya, Barcelona, pp 193–213

  46. Pérez-Haase A, Ninot JM (2017) Hydrological heterogeneity rather than water chemistry explain high plant diversity and uniqueness of a Pyrenean mixed mire. Folia Geobot 1:18

    Google Scholar 

  47. Pérez-Haase A, Ortuño E, Ninot JM (2010) Diversitat de comunitats vegetals a les molleres de la Vall d’Aran (Pirineus centrals). Acta Bot Barc 53:61–112

    Google Scholar 

  48. Siegenthaler A, Wangensteen OS, Benvenuto C, Campos J, Mariani S (2019) DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Mol Ecol 28:232–249

    Google Scholar 

  49. Singer D, Lara E, Steciow MM, Seppey CV, Paredes N, Pillonel A, Oskazo T, Belbahri L (2016) High-throughput sequencing reveals diverse oomycete communities in oligotrophic peat bog micro-habitat. Fungal Ecol 23:42–47

    Google Scholar 

  50. Singer G, Fahner NA, Barnes J, McCarthy A, Hajibabaei M (2019) Comprehensive biodiversity analysis via ultra-deep patterned flow cell technology: a case study of eDNA metabarcoding seawater. Sci Rep 9:5991

    Google Scholar 

  51. Smol JP, Birks HJB, Last WM (2001) Tracking environmental change using lake sediments. Volume 3: terrestrial, algal and siliceous indicators, developments in paleoenvironmental research. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  52. Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050

    Google Scholar 

  53. Tarrats P, Cañedo-Argüelles M, Rieradevall M, Prat N (2017) Chironomid communities as indicators of local and global changes in an oligotrophic high mountain lake (Enol Lake, Northwestern Spain). J Limnol 76:355–365

    Google Scholar 

  54. Thorp J, Covich A (eds) (2009) Ecology and classification of North American freshwater invertebrates. Academic Press, New York

    Google Scholar 

  55. Torti A, Lever MA, Jørgensen BB (2015) Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genom 24:185–196

    Google Scholar 

  56. Wangensteen OS, Turon X (2017) Metabarcoding techniques for assessing biodiversity of marine animal forests. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine animal forests, the ecology of benthic biodiversity hotspots. Springer, Cham, pp 445–473

    Google Scholar 

  57. Wangensteen OS, Cebrian E, Palacín C, Turon X (2018a) Under the canopy: community-wide effects of invasive algae in marine protected areas revealed by metabarcoding. Mar Pollut Bull 127:54–66

    Google Scholar 

  58. Wangensteen OS, Palacín C, Guardiola M, Turon X (2018b) DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ 6:e4705

    Google Scholar 

  59. Xie C, Lou H (2009) Secondary metabolites in bryophytes: an ecological aspect. Chem Biodivers 6:303–312

    Google Scholar 

  60. Young JM, Weyrich LS, Cooper A (2014) Forensic soil DNA analysis using high-throughput sequencing: a comparison of four molecular markers. Forensic Sci Int Genet 13:176–184

    Google Scholar 

  61. Zhu F, Massana R, Not F (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92

    Google Scholar 

Download references

Acknowledgements

We thank Professor Xavier Turon for providing us with the 18S primers. We are indebted to Editor Mark Brenner and to three anonymous reviewers for their suggestions, which contributed to improvement upon earlier versions of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra Garcés-Pastor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcés-Pastor, S., Wangensteen, O.S., Pérez-Haase, A. et al. DNA metabarcoding reveals modern and past eukaryotic communities in a high-mountain peat bog system. J Paleolimnol 62, 425–441 (2019). https://doi.org/10.1007/s10933-019-00097-x

Download citation

Keywords

  • Sedimentary DNA
  • Community DNA
  • Peat bog paleoecology
  • Eukaryotes
  • Pyrenees