Historical eruptions of Lautaro Volcano and their impacts on lacustrine ecosystems in southern Argentina

Abstract

Lacustrine sediment sequences were obtained from Lagunas Verde and Gemelas Este, two small lakes located east of the southern Patagonian Ice Field and close to the village of El Chaltén, in Argentinian Patagonia. Four tephra layers were identified in each of the short sediment sequences and characterised using individual glass-shard tephra chemistry to determine provenance. Bulk sediment geochemistry and diatom assemblages were analysed to understand the impact of the tephra deposits on the lake ecosystems. Age-depth models for the cores were established by 137Cs and 210Pb dating. Tephra deposits in Laguna Gemelas Este were dated to AD 1986–1998, 1943–1968, 1927–1955, and 1849–1892, and the tephra deposits in Laguna Verde were dated to AD 1940–1970, 1888–1934, 1871–1920, and 1536–1669, the latter interval determined by extrapolation. All tephras had similar geochemical composition and originated from volcanoes in the northern Austral Volcanic Zone. Tephra units were attributed to known historical eruptions and all but one, most likely, were from Lautaro Volcano (49°01′S; 73°33′W). The age of the youngest tephra (AD 1986–1998) from Laguna Gemelas Este points to Viedma Volcano (49°22′S; 73°19′W) as a possible source. Volcanic eruptions had a larger impact on Laguna Verde than on Laguna Gemelas Este, as expressed by changes in δ15N values and diatom communities during tephra deposition. These shifts are explained by perturbations of the nitrogen cycle in the lake, associated with shifts in lacustrine primary production. Primary producers may have been affected by increased water turbidity caused by the ash fall, and consequently, used less nitrogen. Diatom assemblages in Laguna Verde showed marked reductions in numbers of planktonic/tychoplanktonic taxa, in favour of epiphytic/benthic diatom taxa, when tephra was deposited. This contrasts with Laguna Gemelas Este, in which epiphytic/benthic diatom species were generally more abundant and decreases in abundances of planktonic/tychoplanktonic taxa were not as strongly linked to tephra layers as in Laguna Verde. At Laguna Gemelas Este, flatter relief, greater fetch and/or drier climate may have contributed to generally less ecosystem variability, resulting in seemingly less environmental response to volcanic eruptions than in Laguna Verde.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol I. Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203

    Google Scholar 

  2. Barker P, Telford R, Merdaci O, Williamson D, Taieb M, Vincens A, Gibert E (2000) The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millennia of climate change. Holocene 10:303–310

    Article  Google Scholar 

  3. Bates CD, Coxon P, Gibbard PL (1978) A new method for the preparation of clay-rich sediment samples for palynological investigation. New Phytol 81:459–463

    Article  Google Scholar 

  4. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of holocene palaeoecology and palaeohydrology. Wiley, New York, pp 527–570

    Google Scholar 

  5. Burmeister CV (1891) Breves datos sobre una excursión a Patagonia. Rev Museo de la Plata 2:381–394

    Google Scholar 

  6. Contreras S, Werne JP, Araneda A, Urrutia R, Conejero CA (2018) Organic matter geochemical signatures (TOC, TN, C/N ratio, δδ13C and δ15N) of surface sediment from lakes distributed along a climatological gradient on the western side of the southern Andes. Sci Total Environ 630:878–888

    Article  Google Scholar 

  7. Cruces F, Urrutia R, Parra O, Araneda A, Treutler H, Bertrand S, Fagel N, Torres L, Barra R, Chirinos L (2006) Changes in diatom assemblages in an Andean lake in response to a recent volcanic event. Arch Hydrobiol 165:23–35

    Article  Google Scholar 

  8. Del Carlo P, Di Roberto A, D’Orazio M, Petrelli M, Angioletti A, Zanchetta G, Maggi V, Daga R, Nazzari M, Rocchi S (2018) Late Glacial-Holocene tephra from southern Patagonia and Tierra del Fuego (Argentina, Chile): a complete textural and geochemical fingerprinting for distal correlations in the Southern Hemisphere. Quat Sci Rev 195:153–170

    Article  Google Scholar 

  9. Egan J, Allot THE, Blackford JJ (2018) Diatom-inferred aquatic impacts of the mid-Holocene eruption of Mount Mazama, Oregon, USA. Quat Res. https://doi.org/10.1017/qua.2018.73

    Google Scholar 

  10. Fan J, Xiao J, Wen R, Zhang S, Wang X, Cui L, Yamagata H (2017) Carbon and nitrogen signatures of sedimentary organic matter from Dali Lake in Inner Mongolia: implications for Holocene hydrological and ecological variations in the East Asian summer monsoon margin. Quat Int 452:65–78

    Article  Google Scholar 

  11. Fernández M, Björck S, Wohlfarth B, Maidana NI, Unkel I, Van der Putten N (2013) Diatom assemblage changes in lacustrine sediments from Isla de los Estados, southernmost South Amerika, in response to shifts in the southwesterly wind belt during last deglaciation. J Paleolimnol 50:433–446

    Article  Google Scholar 

  12. Fey M, Korr C, Maidana NI, Carrevedo ML, Corbella H, Dietrich S, Haberzettl T, Kuhn G, Lücke A, Mayr C, Ohlendorf C, Paez MM, Quintana FA, Schäbitz F, Zolitschka B (2009) Palaeoenvironmental changes during the last 1600 years inferred from the sediment record of a cirque lake in southern Patagonia (Laguna Las Vizcachas, Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 281:363–375

    Article  Google Scholar 

  13. Finlay JC, Kendall C (2007) Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 283–333

    Google Scholar 

  14. Fontjin K, Lachowycz SM, Rawson H, Pyle DM, Mather TA, Naranjo JA, Moreno-Roa H (2014) Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quat Sci Rev 89:70–84

    Article  Google Scholar 

  15. Fontijn K, Rawson H, van Daele M, Moernaut J, Abarzúa AM, Heirman K, Bertrand S, Pyle DM, Mather TA, de Batist M, Naranjo J-A, Moreno H (2016) Synchronisation of sedimentary records using tephra: a postglacial tephrochronological model for the Chilean Lake District. Quat Sci Rev 137:234–254

    Article  Google Scholar 

  16. Frenguelli J (1923) Contribuciones para la sinopsis de las diatomeas argentinas. I Diatomeas del Río Primero en la ciudad de Córdoba. Bol Acad Nac Cienc Cordoba 27:13–119

    Google Scholar 

  17. Frenguelli J (1942) Xvii Contribución al conocimiento de las diatomeas argentinas. Diatomeas del Neuquén (Patagonia). Rev Museo Plata (n.s.) Bot 5(20):73–219

    Google Scholar 

  18. Froggatt PC, Gosson GJ (1982) Techniques for the preparation of tephra samples for mineral and chemical analysis and radiometric dating. Department of Geology, Victoria University of Wellington, vol 23, pp 1–2

  19. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195

    Article  Google Scholar 

  20. Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Climate 26:215–230

    Article  Google Scholar 

  21. Giles MP, Michelutti N, Grooms C, Smaol JP (2018) Long-term limnological changes in the Ecuadorian páramo: comparing the ecological responses to climate warming of shallow waterbodies versus deep lakes. Freshw Biol 63:1316–1325

    Article  Google Scholar 

  22. Global Volcanism Program (2013) In: Venzke E (ed) Volcanoes of the world, v. 4.7.4. Smithsonian Institution. Downloaded 29 Oct 2018. https://doi.org/10.5479/si.GVP.VOTW4-2013

  23. Haberzettl T, Anselmetti FS, Bowen SW, Fey M, Mayr C, Zolitschka B, Ariztegui D, Mauz B, Ohlendorf C, Kastner S, Lücke A, Schäbitz F, Wille M (2009) Late Pleistocene dust deposition in the Patagonian steppe—extending and refining the paleoenvironmental and tephrochronological record from Laguna Potrok Aike back to 55 ka. Quat Sci Rev 28:2927–2939

    Article  Google Scholar 

  24. Hahn A, Kliem P, Oehlerich M, Ohlendorf C, Zolitschka B, the PASADO Science Team (2014) Elemental composition of the Laguna Potrok Aike sediment sequence reveals paleoclimatic changes over the past 51 ka in southern Patagonia, Argentina. J Paleolimnol 52:349–366

    Article  Google Scholar 

  25. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 15:850–853

    Article  Google Scholar 

  26. Harris D, Horwáth WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856

    Article  Google Scholar 

  27. Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, De Bruin D, Canil D, Cornell D, De Hoog CJ, Dalpé C, Danyushevshy L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri EH, Höfer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:Q02008. https://doi.org/10.1029/2005GC001060

    Article  Google Scholar 

  28. Kastner S, Enters D, Ohlendorf C, Haberzettl T, Kuhn G, Lücke A, Mayr C, Reyss J-L, Wastegård S, Zolitschka B (2010) Reconstructing 2000 years of hydrological variation derived from laminated proglacial sediments of Lago del Desierto at the eastern margin of the Southern Patagonian Ice Field, Argentina. Global Planet Change 72:201–214

    Article  Google Scholar 

  29. Kilian R (1990) The Australandean Volcanic Zone (South Patagonia). In: Symposium international “Géodynamique andine”: Résumés des communication, Grenoble, France. Orstom, Paris, pp 301–304

  30. Kilian R, Hohner M, Biester H, Wallrabe-Adams HJ, Stern CR (2003) Holocene peat and lake sediment tephra record from the southernmost Chilean Andes (53–55 S). Rev Geol Chile 30:23–37

    Article  Google Scholar 

  31. Lliboutry L (1998) Glaciers of the Wet Andes. In: Williams J, Ferringo R (eds) Glaciers of South America. US Geological Survey Professional Paper 1386-I, pp 148–206

  32. Lotter AE, Birks HJB, Zolitschka B (1995) Late-glacial pollen and diatom changes in response to two different environmental perturbations: volcanic eruption and Younger Dryas cooling. J Paleolimnol 14:23–47

    Article  Google Scholar 

  33. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6:107–153

    Article  Google Scholar 

  34. Madsen A (1952) Patagonia vieja. Ciordia y Rodríguez, Buenos Aires

    Google Scholar 

  35. Markgraf V, Bradbury JP, Schwalb A, Burns SJ, Stern C, Ariztegui D, Anselmetti FS, Stine S, Maidana N (2003) Holocene palaeoclimates of southern Patagonia: limnological and environmental history of Lago Cardiel, Argentina. The Holocene 13:597–607

    Article  Google Scholar 

  36. Martinic M (1988) Actividad volcánica histórica en la region de Magallanes. Rev Geol Chile 15:181–186

    Google Scholar 

  37. Martinic M (2008) Registro historico de antecedentes volcánicos y sísmicos en la Patagonia Austral y la Tierra del Fuego. Magallania 36:5–18

    Google Scholar 

  38. Martinic M (2016) La erupción del volcán de los gigantes (Lautaro) en 1883. Algunas Consideraciones. Magallania 44:65–68

    Article  Google Scholar 

  39. Masiokas M, Rivera A, Espizua LE, Villalba R, Delgado S, Aravena JC (2009) Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr Palaeoclimatol Palaeoecol 281:242–268

    Article  Google Scholar 

  40. Mayr C, Lücke A, Maidana NI, Wille M, Haberzettl T, Corbella H, Ohlendorf C, Schäbitz F, Fey M, Janssen S, Zolitschka B (2009) Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J Paleolimnol 42:81–102

    Article  Google Scholar 

  41. Meier WJ-H, Grießinger J, Hochreuther P, Braun MH (2018) An updated multi-temporal glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Front Earth Sci. https://doi.org/10.3389/feart.2018.00062

    Google Scholar 

  42. Messager ML, Lehner B, Grill G, Nedeva I, Schmitt O (2016) Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat Commun 7:13603. https://doi.org/10.1038/ncomms13603

    Article  Google Scholar 

  43. Metzeltin D, Lange-Bertalot H (1998) Tropical diatoms of South America I. About 700 predominantly rarely known or new taxa representative of the neotropical flora. Iconogr Diatomol 5:1–695

    Google Scholar 

  44. Metzeltin D, Lange-Bertalot H (2007) Tropical diatoms of South America II. Special remarks on biogeographic disjunction. Iconogr Diatomol 18:1–877

    Google Scholar 

  45. Metzeltin D, Lange-Bertalot H, García-Rodríguez F (2005) Diatoms of Uruguay. Compared with other taxa from South America and elsewhere. Iconogr Diatomol 15:1–736

    Google Scholar 

  46. Meyers P, Lallier-Vergés E (1999) Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  47. Motoki A, Orihashi Y, Naranjo J, Hirata D, Skvarca P, Anma R (2006) Geologic reconnaissance of Lautaro Volcano, Chilean Patagonia. Rev Geol Chile 33:177–187

    Article  Google Scholar 

  48. Munsell Color (2000) Munsell soil color charts. Munsell Color, Grand Rapids

    Google Scholar 

  49. Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42 30′–45 S) of the Andean Southern Volcanic Zone. Rev Geol Chile 31:224–240

    Google Scholar 

  50. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res: atmos 87:1231–1238

    Article  Google Scholar 

  51. Ohlendorf C, Gebhardt C, Hahn A, Kliem P, Zolitschka B, the PASADO science team (2011) The PASADO core processing strategy—a proposed new protocol for sediment core treatment in multidisciplinary lake drilling projects. Sediment Geol 239:104–115

    Article  Google Scholar 

  52. Recasens C, Ariztegui D, Maidana NI, Zolitschka B, The PASADO, Team Science (2015) Diatoms as indicators of hydrological and climatic changes in Laguna Potrok Aike (Patagonia) since the Late Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 417:309–319

    Article  Google Scholar 

  53. Ribeiro Guevara S, Arribére M (2002) 137Cs dating of lake cores form the Nahuel Huapi National Park, Patagonia, Argentina: historical records and profile measurements. J Radioanal Nucl Chem 252:37–45

    Article  Google Scholar 

  54. Rodriguez DR (2009) Allá lejos El Chaltén. Honorable Cámara de Diputados de la Provincia de Santa Cruz, Rio Gallegos

    Google Scholar 

  55. Rumrich U, Lange-Bertalot H, Rumrich M (2000) Diatoms of the Andes. From Venezuela to Patagonia/Tierra del Fuego. Iconogr Diatomol 9:1–649

    Google Scholar 

  56. Sanchez-Cabeza JA, Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: an integrated formulation and classification of dating models. Geochim Cosmochim Acta 82:183–200

    Article  Google Scholar 

  57. Self AE, Klimaschewski A, Solovieva N, Jones VJ, Andrén E, Andreev AA, Hammarlund D, Brooks SJ (2015) The relative influences of climate and volcanic activity on Holocene lake development inferred from a mountain lake in central Kamchatka. Glob Planet Change 134:67–81

    Article  Google Scholar 

  58. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world. Smithsonian Institution, Berkeley

    Google Scholar 

  59. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:1–51

    Article  Google Scholar 

  60. Stern C (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70:435–454

    Article  Google Scholar 

  61. Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281

    Article  Google Scholar 

  62. Telford RJ, Barker P, Metcalfe S, Newton A (2004) Lacustrine responses to tephra deposition: examples from Mexico. Quat Sci Rev 23:2337–2353

    Article  Google Scholar 

  63. Urrutia R, Araneda A, Cruces F, Torres L, Chirinos L, Treutler HC, Fagel N, Bertrand S, Alvial I, Barra R, Chapron E (2007) Changes in diatom, pollen, and chironomid assemblages in response to a recent volcanic event in Lake Galletue (Chilean Andes). Limnologica 37:49–62

    Article  Google Scholar 

  64. Villegas DC, Pereyra FX, Viaggio M, Ferrer JA (2009) Occurencia de materiales piroclásticos en suelos de tres sectores del oeste de Santa Cruz. Rev Assoc Geol Argent 64:303–311

    Google Scholar 

  65. Waser NAD, Harrison PJ, Nielsen B, Calvert SE, Turpin DH (1998) Nitrogen isotope fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and urea by a marine diatom. Limnol Oceanogr 43:215–224

    Article  Google Scholar 

  66. Wastegård S, Veres D, Kliem P, Hahn A, Ohlendorf C, Zolitschka B, The PASADO, Team Science (2013) Towards a late Quaternary tephrochronological framework for the southernmost part of South America – the Laguna Potrok Aike tephra record. Quat Sci Rev 71:81–90

    Article  Google Scholar 

  67. Weller DJ, Miranda CG, Moreno PI, Villa-Martínez R, Stern CR (2015) Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile. Bull Volcanol 77:1–24

    Article  Google Scholar 

  68. Weller DJ, de Porras ME, Maldonado A (2017) Holocene tephrochronology of the lower Río Cisnes valley, southern Chile. Andean Geol 44:229–248

    Article  Google Scholar 

  69. Wilson TM, Cole JW, Stewart C, Cronin SJ, Johnston DM (2011) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239

    Article  Google Scholar 

Download references

Acknowledgements

CM and JM acknowledge funding by BMBF (01DN16025) and cooperative project BMBF/MINCYT (AL15/03). RES was funded by NERC as part of the Environmental Research Doctoral Training Partnership at the University of Oxford (Grant: NE/L002621/1). We are indebted to Ana Srur for help in the field and Sabine Stahl for assistance with XRF scanning. We thank the Los Glaciares National Park for support and permission for sampling. The provision of local meteorological data by the Argentinian Undersecretary of Water Resources of the Nation, Federico Reese, and Valeria Luvisoti, is gratefully acknowledged. We are grateful to Sebastien Bertrand and an anonymous reviewer, and to the editors, in particular Mark Brenner, for comments and suggestions on earlier versions of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Mayr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mayr, C., Smith, R.E., García, M.L. et al. Historical eruptions of Lautaro Volcano and their impacts on lacustrine ecosystems in southern Argentina. J Paleolimnol 62, 205–221 (2019). https://doi.org/10.1007/s10933-019-00088-y

Download citation

Keywords

  • Patagonia
  • Northern Austral Volcanic Zone
  • 210Pb dating
  • Diatoms
  • Geochemistry
  • Stable isotopes
  • Tephra