A chironomid-inferred Holocene temperature record from a shallow Canadian boreal lake: potentials and pitfalls

Abstract

The biodiversity of shallow (zmax < 5–7 m) lakes is sensitive to water-level and climate changes, but few such aquatic ecosystems have been studied in the context of quantitative climate reconstruction. Lac Lili (unofficial name) is located in the boreal forest of western Quebec, Canada, and was chosen for its shallowness (zmax = 1.40 m) to assess if chironomid assemblages in the sediments could be used to reconstruct Holocene temperature fluctuations quantitatively. Inferred temperatures displayed a decreasing trend from a maximum value ca. 8000–3500 cal year BP, slight warming between ca. 3500 and 3000 cal year BP, followed by cooling to the present. Although chironomid assemblages were influenced by factors other than climate, primarily water depth and changes in macrophyte richness, the reconstructed Holocene temperature pattern was very similar to the known regional climate history. Temperature inferences derived from the chironomid assemblages were, however, warmer than the two reference periods. This deviation was likely a consequence of three factors: (1) shallowness of the lake, which favoured littoral taxa with warmer-than-today temperature optima, (2) the low number of lakes warmer than 16 °C in the training set, and (3) the absence of shallow lakes in the training set.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ali AA, Asselin H, Larouche AC, Bergeron Y, Carcaillet C, Richard PJH (2008) Changes in fire regime explain the Holocene rise and fall of Abies balsamea in the coniferous forests of western Quebec, Canada. Holocene 18:693–703

    Article  Google Scholar 

  2. Ali AA, Carcaillet C, Bergeron Y (2009) Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors. Glob Change Biol 15:1230–1241

    Article  Google Scholar 

  3. Ali AA, Blarquez O, Girardin MP, Hély C, Tinquaut F, El Guellab A, Valsecchi V, Terrier A, Bremond L, Genries A, Gauthier S, Bergeron Y (2012) Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proc Natl Acad Sci 109:20966–20970

    Article  Google Scholar 

  4. Axford Y, Briner JP, Cooke CA, Francis DR, Michelutti N, Miller GH, Smol JP, Thomas EK, Wilson CR, Wolfe AP (2009) Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proc Natl Acad Sci 106:18443–18446

    Article  Google Scholar 

  5. Bajolle L, Larocque-Tobler I, Gandouin E, Lavoie M, Bergeron Y, Ali AA (2018) Major postglacial summer temperature changes in the central coniferous boreal forest of Quebec (Canada) inferred using chironomid assemblages. J Quat Sci 33:409–420

    Article  Google Scholar 

  6. Bennett KD (1996) Determination of the Number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  7. Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518

    Article  Google Scholar 

  8. Blindow I, Hargeby A, Andersson G (2002) Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat Bot 72:315–334

    Article  Google Scholar 

  9. Blouin J, Berger J-P (2005) Guide de reconnaissance des types écologiques: région écologique 6a, Plaine du Lac Matagami: Région écologique 6b, Plaine de la Baie de Rupert. Ministère Ressour Nat Faune Dir Inven For Div Classif Écologique Product Stn

  10. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Google Scholar 

  11. Brodersen KP, Lindegaard C (1997) Significance of subfossile chironomid remains in classification of shallow lakes. Hydrobiologia 342–343:125–132

    Article  Google Scholar 

  12. Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid-macrophyte co-occurrence. Freshw Biol 46:253–267

    Article  Google Scholar 

  13. Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741

    Article  Google Scholar 

  14. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic chironomidae in palaeoecology. QRA Technical Guide No. 10. Quat Res Assoc London

  15. Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506:23–27

    Article  Google Scholar 

  16. El-Guellab A, Asselin H, Gauthier S, Bergeron Y, Ali AA (2015) Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest. For Ecosyst 2:1–7

    Article  Google Scholar 

  17. Engels S, Cwynar LC (2011) Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665:15–38

    Article  Google Scholar 

  18. Engels S, Cwynar LC, Rees ABH, Shuman BN (2012) Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models. J Paleolimnol 48:693–709

    Article  Google Scholar 

  19. Environnement Canada (2017) Normales Climatiques au Canada, Service Météorologique du Canada. Available at http://climate.weatheroffice.ec.gc.ca/climate_normals/. Accessed 15 April 2017

  20. Garralla S, Gajewski K (1992) Holocene vegetation history of the boreal forest near Chibougamau, central Quebec. Can J Bot 70:1364–1368

    Article  Google Scholar 

  21. Glew JR (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287

    Article  Google Scholar 

  22. Greffard M-H, Saulnier-Talbot É, Gregory-Eaves I (2012) Sub-fossil chironomids are significant indicators of turbidity in shallow lakes of northeastern USA. J Paleolimnol 47:561–581

    Article  Google Scholar 

  23. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35

    Article  Google Scholar 

  24. Heiri O, Lotter AF (2010) How does taxonomic resolution affect chironomid-based temperature reconstruction? J Paleolimnol 44:589–601

    Article  Google Scholar 

  25. Heiri O, Cremer H, Engels S, Hoek WZ, Peeters W, Lotter AF (2007) Lateglacial summer temperatures in the Northwest European lowlands: a chironomid record from Hijkermeer, the Netherlands. Quat Sci Rev 26:2420–2437

    Article  Google Scholar 

  26. Hély C, Girardin MP, Ali AA, Carcaillet C, Brewer S, Bergeron Y (2010) Eastern boreal North American wildfire risk of the past 7000 years: a model-data comparison. Geophys Res Lett 37:L14709

    Article  Google Scholar 

  27. Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–2072

    Article  Google Scholar 

  28. Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL, Beklioglu M, Brucet S, Volta P, González-Bergonzoni I, Nielsen A (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73:84–107

    Article  Google Scholar 

  29. Juggins S (2003) C2 Program. University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  30. Juggins S (2015) Rioja: analysis of quaternary science data package for R. R package version 0.9-5. Available at http://cran.r-project.org/web/packages/rioja/index.html. Accessed 11 Feb 2016

  31. Korhola A, Vasko K, Toivonen HT, Olander H (2002) Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Quat Sci Rev 21:1841–1860

    Article  Google Scholar 

  32. Langdon PG, Holmes N, Caseldine CJ (2008) Environmental controls on modern chironomid faunas from NW Iceland and implications for reconstructing climate change. J Paleolimnol 40:273–293

    Article  Google Scholar 

  33. Langdon PG, Ruiz Z, Wynne S, Sayer CD, Davidson TA (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545

    Article  Google Scholar 

  34. Larocque I (2001) How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 172:133–142

    Article  Google Scholar 

  35. Larocque I (2008) Nouvelle fonction de transfert pour reconstruire la température à l'aide des chironomides préservés dans les sédiments lacustres. Institut national de la recherche scientifique, Centre Eau, Terre & Environnement

  36. Larocque I, Hall RI (2003) Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. J Paleolimnol 29:475–493

    Article  Google Scholar 

  37. Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can J Fish Aquat Sci 63:1286–1297

    Article  Google Scholar 

  38. Larocque I, Grosjean M, Heiri O, Bigler C, Blass A (2009) Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. J Paleolimnol 41:329–342

    Article  Google Scholar 

  39. Larocque-Tobler I, Filipiak J, Tylmann W, Bonk A, Grosjean M (2016) Corrigendum to” Comparison between chironomid-inferred mean-August temperature from varved Lake Zabinskie (Poland) and instrumental data since 1896 AD”[Quat. Sci. Rev. 111 (2015) 35–50]. Quat Sci Rev 140:163–167

    Article  Google Scholar 

  40. Learner MA, Wiles PR, Pickering JG (1989) The influence of aquatic macrophyte identity on the composition of the chironomid fauna in a former gravel pit in Berkshire, England. Aquat Insects 11:183–191

    Article  Google Scholar 

  41. Luoto TP, Ojala AEK (2017) Meteorological validation of chironomids as a paleotemperature proxy using varved lake sediments. Holocene 27:870–878

    Article  Google Scholar 

  42. Meerhoff M, Jeppesen E (2009) Shallow lakes and ponds. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Amsterdam, pp 645–655

    Google Scholar 

  43. Millet L, Rius D, Galop D, Heiri O, Brooks SJ (2012) Chironomid-based reconstruction of Lateglacial summer temperatures from the Ech palaeolake record (French western Pyrenees). Palaeogeogr Palaeoclimatol Palaeoecol 315:86–99

    Article  Google Scholar 

  44. Mooij WM, Janse JH, Domis LNDS, Hülsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454

    Article  Google Scholar 

  45. Overpeck JT, Webb T, Prentice IC (1985) quantitative interpretation of fossil pollen spectra—dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108

    Article  Google Scholar 

  46. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg E, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365

    Article  Google Scholar 

  47. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/. Accessed 11 Feb 2016

  48. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  49. Saucier J-P, Grondin P, Robitaille A, Gosselin J, Morneau C, Richard PJH, Brisson J, Sirois L, Leduc A, Morin H, Thiffault É, Gauthier S, Lavoie C, Payette S (2009) Écologie forestière. Chap 4 Man For Seconde Édition Ouvrage Collect Éditions. MultiMondes Ordre Ing For Qué Qué 2:165–315

    Google Scholar 

  50. Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466

    Article  Google Scholar 

  51. Smol JP (2016) Arctic and Sub-Arctic shallow lakes in a multiple-stressor world: a paleoecological perspective. Hydrobiologia 778:253–272

    Article  Google Scholar 

  52. Tarkowska-Kukuryk M, Kornijów R (2008) Influence of spatial distribution of submerged macrophytes on Chironomidae assemblages in shallow lakes. Pol J Ecol 56:569–579

    Google Scholar 

  53. Upiter LM, Vermaire JC, Patterson RT et al (2014) Middle to late Holocene chironomid-inferred July temperatures for the central Northwest Territories, Canada. J Paleolimnol 52:11–26

    Article  Google Scholar 

  54. Viau AE, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330. https://doi.org/10.1175/2008JCLI2342.1

    Article  Google Scholar 

  55. Viau AE, Gajewski K, Sawada MC, Fines P (2006) Millennial-scale temperature variations in North America during the Holocene. J Geophys Res 111:D09102

    Article  Google Scholar 

  56. Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North American experience. Quat Sci Rev 25:1911–1925

    Article  Google Scholar 

  57. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Elsevier, San Diego

    Google Scholar 

  58. Zhang E, Chang J, Cao Y, Tang H, Langdon P, Shulmeister J, Wang R, Yang X, Shen J (2017) A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China. Clim Past 13:185–199

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Centre National de la Recherche Scientifique (France), the European IRSES NEWFORESTS program, the MITAC program, the Institut Universitaire de France and the Institut Écologie et Environnement through the GDRI “Forêts Froides.” We thank the French University Institute for its support, the University of Montpellier, and Aix-Marseille University. Our thanks to R. Julien, D. Gervais, B. Brossier, and M. Girardin for their participation in fieldwork. We greatly appreciate the contribution of the Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP), especially P. Grondin.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa Bajolle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bajolle, L., Larocque-Tobler, I., Ali, A.A. et al. A chironomid-inferred Holocene temperature record from a shallow Canadian boreal lake: potentials and pitfalls. J Paleolimnol 61, 69–84 (2019). https://doi.org/10.1007/s10933-018-0045-9

Download citation

Keywords

  • Chironomidae
  • Holocene
  • Paleoclimate reconstructions
  • Transfer function
  • Water level
  • Boreal forest