Ali AA, Asselin H, Larouche AC, Bergeron Y, Carcaillet C, Richard PJH (2008) Changes in fire regime explain the Holocene rise and fall of Abies balsamea in the coniferous forests of western Quebec, Canada. Holocene 18:693–703
Article
Google Scholar
Ali AA, Carcaillet C, Bergeron Y (2009) Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors. Glob Change Biol 15:1230–1241
Article
Google Scholar
Ali AA, Blarquez O, Girardin MP, Hély C, Tinquaut F, El Guellab A, Valsecchi V, Terrier A, Bremond L, Genries A, Gauthier S, Bergeron Y (2012) Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Proc Natl Acad Sci 109:20966–20970
Article
Google Scholar
Axford Y, Briner JP, Cooke CA, Francis DR, Michelutti N, Miller GH, Smol JP, Thomas EK, Wilson CR, Wolfe AP (2009) Recent changes in a remote Arctic lake are unique within the past 200,000 years. Proc Natl Acad Sci 106:18443–18446
Article
Google Scholar
Bajolle L, Larocque-Tobler I, Gandouin E, Lavoie M, Bergeron Y, Ali AA (2018) Major postglacial summer temperature changes in the central coniferous boreal forest of Quebec (Canada) inferred using chironomid assemblages. J Quat Sci 33:409–420
Article
Google Scholar
Bennett KD (1996) Determination of the Number of zones in a biostratigraphical sequence. New Phytol 132:155–170
Article
Google Scholar
Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518
Article
Google Scholar
Blindow I, Hargeby A, Andersson G (2002) Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquat Bot 72:315–334
Article
Google Scholar
Blouin J, Berger J-P (2005) Guide de reconnaissance des types écologiques: région écologique 6a, Plaine du Lac Matagami: Région écologique 6b, Plaine de la Baie de Rupert. Ministère Ressour Nat Faune Dir Inven For Div Classif Écologique Product Stn
Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York
Book
Google Scholar
Brodersen KP, Lindegaard C (1997) Significance of subfossile chironomid remains in classification of shallow lakes. Hydrobiologia 342–343:125–132
Article
Google Scholar
Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Sobygaard, Denmark: chironomid-macrophyte co-occurrence. Freshw Biol 46:253–267
Article
Google Scholar
Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741
Article
Google Scholar
Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaearctic chironomidae in palaeoecology. QRA Technical Guide No. 10. Quat Res Assoc London
Coops H, Beklioglu M, Crisman TL (2003) The role of water-level fluctuations in shallow lake ecosystems—workshop conclusions. Hydrobiologia 506:23–27
Article
Google Scholar
El-Guellab A, Asselin H, Gauthier S, Bergeron Y, Ali AA (2015) Holocene variations of wildfire occurrence as a guide for sustainable management of the northeastern Canadian boreal forest. For Ecosyst 2:1–7
Article
Google Scholar
Engels S, Cwynar LC (2011) Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665:15–38
Article
Google Scholar
Engels S, Cwynar LC, Rees ABH, Shuman BN (2012) Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models. J Paleolimnol 48:693–709
Article
Google Scholar
Environnement Canada (2017) Normales Climatiques au Canada, Service Météorologique du Canada. Available at http://climate.weatheroffice.ec.gc.ca/climate_normals/. Accessed 15 April 2017
Garralla S, Gajewski K (1992) Holocene vegetation history of the boreal forest near Chibougamau, central Quebec. Can J Bot 70:1364–1368
Article
Google Scholar
Glew JR (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287
Article
Google Scholar
Greffard M-H, Saulnier-Talbot É, Gregory-Eaves I (2012) Sub-fossil chironomids are significant indicators of turbidity in shallow lakes of northeastern USA. J Paleolimnol 47:561–581
Article
Google Scholar
Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35
Article
Google Scholar
Heiri O, Lotter AF (2010) How does taxonomic resolution affect chironomid-based temperature reconstruction? J Paleolimnol 44:589–601
Article
Google Scholar
Heiri O, Cremer H, Engels S, Hoek WZ, Peeters W, Lotter AF (2007) Lateglacial summer temperatures in the Northwest European lowlands: a chironomid record from Hijkermeer, the Netherlands. Quat Sci Rev 26:2420–2437
Article
Google Scholar
Hély C, Girardin MP, Ali AA, Carcaillet C, Brewer S, Bergeron Y (2010) Eastern boreal North American wildfire risk of the past 7000 years: a model-data comparison. Geophys Res Lett 37:L14709
Article
Google Scholar
Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55:2059–2072
Article
Google Scholar
Jeppesen E, Meerhoff M, Davidson TA, Trolle D, Søndergaard M, Lauridsen TL, Beklioglu M, Brucet S, Volta P, González-Bergonzoni I, Nielsen A (2014) Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J Limnol 73:84–107
Article
Google Scholar
Juggins S (2003) C2 Program. University of Newcastle, Newcastle upon Tyne
Google Scholar
Juggins S (2015) Rioja: analysis of quaternary science data package for R. R package version 0.9-5. Available at http://cran.r-project.org/web/packages/rioja/index.html. Accessed 11 Feb 2016
Korhola A, Vasko K, Toivonen HT, Olander H (2002) Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Quat Sci Rev 21:1841–1860
Article
Google Scholar
Langdon PG, Holmes N, Caseldine CJ (2008) Environmental controls on modern chironomid faunas from NW Iceland and implications for reconstructing climate change. J Paleolimnol 40:273–293
Article
Google Scholar
Langdon PG, Ruiz Z, Wynne S, Sayer CD, Davidson TA (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545
Article
Google Scholar
Larocque I (2001) How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 172:133–142
Article
Google Scholar
Larocque I (2008) Nouvelle fonction de transfert pour reconstruire la température à l'aide des chironomides préservés dans les sédiments lacustres. Institut national de la recherche scientifique, Centre Eau, Terre & Environnement
Larocque I, Hall RI (2003) Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. J Paleolimnol 29:475–493
Article
Google Scholar
Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can J Fish Aquat Sci 63:1286–1297
Article
Google Scholar
Larocque I, Grosjean M, Heiri O, Bigler C, Blass A (2009) Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. J Paleolimnol 41:329–342
Article
Google Scholar
Larocque-Tobler I, Filipiak J, Tylmann W, Bonk A, Grosjean M (2016) Corrigendum to” Comparison between chironomid-inferred mean-August temperature from varved Lake Zabinskie (Poland) and instrumental data since 1896 AD”[Quat. Sci. Rev. 111 (2015) 35–50]. Quat Sci Rev 140:163–167
Article
Google Scholar
Learner MA, Wiles PR, Pickering JG (1989) The influence of aquatic macrophyte identity on the composition of the chironomid fauna in a former gravel pit in Berkshire, England. Aquat Insects 11:183–191
Article
Google Scholar
Luoto TP, Ojala AEK (2017) Meteorological validation of chironomids as a paleotemperature proxy using varved lake sediments. Holocene 27:870–878
Article
Google Scholar
Meerhoff M, Jeppesen E (2009) Shallow lakes and ponds. In: Likens GE (ed) Encyclopedia of inland waters. Elsevier, Amsterdam, pp 645–655
Chapter
Google Scholar
Millet L, Rius D, Galop D, Heiri O, Brooks SJ (2012) Chironomid-based reconstruction of Lateglacial summer temperatures from the Ech palaeolake record (French western Pyrenees). Palaeogeogr Palaeoclimatol Palaeoecol 315:86–99
Article
Google Scholar
Mooij WM, Janse JH, Domis LNDS, Hülsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454
Article
Google Scholar
Overpeck JT, Webb T, Prentice IC (1985) quantitative interpretation of fossil pollen spectra—dissimilarity coefficients and the method of modern analogs. Quat Res 23:87–108
Article
Google Scholar
Price DT, Alfaro RI, Brown KJ, Flannigan MD, Fleming RA, Hogg E, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA (2013) Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 21:322–365
Article
Google Scholar
R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org/. Accessed 11 Feb 2016
Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887
Article
Google Scholar
Saucier J-P, Grondin P, Robitaille A, Gosselin J, Morneau C, Richard PJH, Brisson J, Sirois L, Leduc A, Morin H, Thiffault É, Gauthier S, Lavoie C, Payette S (2009) Écologie forestière. Chap 4 Man For Seconde Édition Ouvrage Collect Éditions. MultiMondes Ordre Ing For Qué Qué 2:165–315
Google Scholar
Scheffer M, van Nes EH (2007) Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–466
Article
Google Scholar
Smol JP (2016) Arctic and Sub-Arctic shallow lakes in a multiple-stressor world: a paleoecological perspective. Hydrobiologia 778:253–272
Article
Google Scholar
Tarkowska-Kukuryk M, Kornijów R (2008) Influence of spatial distribution of submerged macrophytes on Chironomidae assemblages in shallow lakes. Pol J Ecol 56:569–579
Google Scholar
Upiter LM, Vermaire JC, Patterson RT et al (2014) Middle to late Holocene chironomid-inferred July temperatures for the central Northwest Territories, Canada. J Paleolimnol 52:11–26
Article
Google Scholar
Viau AE, Gajewski K (2009) Reconstructing millennial-scale, regional paleoclimates of boreal Canada during the Holocene. J Clim 22:316–330. https://doi.org/10.1175/2008JCLI2342.1
Article
Google Scholar
Viau AE, Gajewski K, Sawada MC, Fines P (2006) Millennial-scale temperature variations in North America during the Holocene. J Geophys Res 111:D09102
Article
Google Scholar
Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North American experience. Quat Sci Rev 25:1911–1925
Article
Google Scholar
Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Elsevier, San Diego
Google Scholar
Zhang E, Chang J, Cao Y, Tang H, Langdon P, Shulmeister J, Wang R, Yang X, Shen J (2017) A chironomid-based mean July temperature inference model from the south-east margin of the Tibetan Plateau, China. Clim Past 13:185–199
Article
Google Scholar