Advertisement

Journal of Paleolimnology

, Volume 61, Issue 1, pp 1–16 | Cite as

Late glacial and early Holocene climate and environmental changes in the eastern Baltic area inferred from sediment C/N ratio

  • Merlin LiivEmail author
  • Tiiu Alliksaar
  • Leeli Amon
  • Rene Freiberg
  • Atko Heinsalu
  • Triin Reitalu
  • Leili Saarse
  • Heikki Seppä
  • Normunds Stivrins
  • Ilmar Tõnno
  • Jüri Vassiljev
  • Siim Veski
Original paper

Abstract

We assessed the utility of using the sediment total organic carbon/total nitrogen (C/N) ratio as an indicator of paleoclimate changes in the eastern Baltic area during the late glacial and early Holocene. The C/N ratio in sediments from Lake Lielais Svētiņu, eastern Latvia, was compared with other sediment variables that are used as proxies of past climate and environment. Analysis revealed that although the organic matter (OM) content in late glacial sediments was extremely low, the C/N ratio captured information about OM origin, and fluctuations in the ratio tracked climate oscillations. The C/N ratio was significantly positively correlated with pollen-inferred mean summer temperature. Therefore, C/N ratio was lower under colder conditions, indicating a predominantly phytoplankton origin of OM, and was higher during warmer conditions, when there was more vegetation around the lake. A strong positive correlation between C/N ratio and the paleopigment beta carotene suggested that elevated phytoplankton production resulted from higher nutrient availability that was controlled largely by the input of terrestrial OM to the lake during warmer climate episodes. Thus, C/N ratio was a good indicator of paleoclimate changes, at least for the late glacial period, when generally cold conditions prevailed. This study also demonstrates the power of multi-proxy paleolimnological analyses for investigating past environmental changes in lakes and their watersheds.

Keywords

Late glacial Climate change C/N ratio Multi-proxy Paleolimnology Latvia 

Notes

Acknowledgements

This study was supported by the Estonian Ministry of Education and Research through institutional research funding (IUT1–8, IUT21–2, PUT1173), the Estonian Science Foundation (ETF9031) EBOR project and national basic funding for science project Y5-AZ03-ZF-N-110 “Dabas resursu ilgtspējīga izmantošana klimata pārmaiņu kontekstā” Nr. ZD2010/AZ03. This paper was revised by Elsevier Language Editing Services. Two anonymous referees and Co-Editor in Chief Mark Brenner provided helpful comments on the manuscript.

Supplementary material

10933_2018_41_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. Adrian R, Walz N, Hintze T, Hoeg S, Rusche R (1999) Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshw Biol 41:621–632CrossRefGoogle Scholar
  2. Amon L, Veski S, Vassiljev J (2014) Tree taxa immigration to the eastern Baltic region, southeastern sector of Scandinavian glaciation during the Late-glacial period (14500–11700 cal. BP). Veg Hist Archaeobot 23:207–216CrossRefGoogle Scholar
  3. Balascio NL, Bradley RS (2012) Evaluating Holocene climate change in northern Norway using sediment records from two contrasting lake systems. J Paleolimnol 48:259–273CrossRefGoogle Scholar
  4. Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control, 3rd edn. Holden-Day, San FransiscoGoogle Scholar
  5. Brenner M, Hodell DA, Leyden BW, Curtis JH, Kenney WF, Gu B, Newman JM (2006) Mechanisms for organic matter and phosphorus burial in sediments of a shallow, subtropical, macrophyte-dominated lake. J Paleolimnol 35:129–148CrossRefGoogle Scholar
  6. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60CrossRefGoogle Scholar
  7. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360CrossRefGoogle Scholar
  8. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96Google Scholar
  9. Choudhary P, Routh J, Chakrapani GJ (2009) Comparison of bulk organic matter characteristics in sediments of three Kumaun Himalayan lakes. Curr Sci 97:572–575Google Scholar
  10. Choudhary P, Routh J, Chakrapani GJ (2013) A 100-year record of changes in organic matter characteristics and productivity in Lake Bhimtal in the Kumaon Himalaya, NW India. J Paleolimnol 49:129–143CrossRefGoogle Scholar
  11. Dauškane I, Brūmelis G, Elferts D (2011) Effect of climate on extreme radial growth of Scots pine growing on bogs in Latvia. Est J Ecol 60:236–248CrossRefGoogle Scholar
  12. Dreßler M, Hübener T, Görs S, Werner P, Selig U (2007) Multi-proxy reconstruction of trophic state, hypolimnetic anoxia and phototrophic sulphur bacteria abundance in a dimictic lake in Northern Germany over the past 80 years. J Paleolimnol 37:205–219CrossRefGoogle Scholar
  13. Enters D, Kirilova E, Lotter AF, Lücke A, Parplies J, Jahns S, Kuhn G, Zolitschka B (2010) Climate change and human impact at Sacrower See (NE Germany) during the past 13,000 years: a geochemical record. J Paleolimnol 43:719–737CrossRefGoogle Scholar
  14. Gälman V, Rydberg J, de-Luna SS, Bindler R, Renberg I (2008) Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol Oceanogr 53:1076–1082CrossRefGoogle Scholar
  15. Goslar T, Bałaga K, Arnold M, Tisnerat N, Starnawska E, Kuźniarski M, Chróst L, Walanus A, Więckowski K (1999) Climate-related variations in the composition of the Lateglacial and Early Holocene sediments of Lake Perespilno (eastern Poland). Quat Sci Rev 18:899–911CrossRefGoogle Scholar
  16. Heikkilä M, Fontana SL, Seppä H (2009) Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. J Quat Sci 24:802–815CrossRefGoogle Scholar
  17. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  18. Heiri O, Brooks SJ, Renssen H, Bedford A, Hazekamp M, Ilyashuk B, Jeffers ES, Lang B, Kirilova E, Kuiper S, Millet L, Samartin S, Toth M, Verbruggen F, Watson JE, van Asch N, Lammertsma E, Amon L, Birks HH, Birks HJB, Mortensen MF, Hoek WZ, Magyari E, Sobrino CM, Seppä H, Tinner W, Tonkov S, Veski S, Lotter AF (2014) Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat Commun 5:4914CrossRefGoogle Scholar
  19. Henriksen M, Mangerud J, Matiouchkov A, Paus A, Svendsen J (2003) Lake stratigraphy implies an 80,000 year delayed melting of buried dead ice in northern Russia. J Quat Sci 18:663–679CrossRefGoogle Scholar
  20. Herzschuh U, Zhang CJ, Mischke S, Herzschuh R, Mohammadi F, Mingram B, Kürschner H, Riedel F (2005) A late Quaternary lake record from the Qilian Mountains (NW China): evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data. Glob Planet Change 46:361–379CrossRefGoogle Scholar
  21. Isarin RFB, Renssen H (1999) Reconstructing and modelling Late Weichselian climates: the Younger Dryas in Europe as a case study. Earth Sci Rev 48:1–38CrossRefGoogle Scholar
  22. Ji S, Xingqi L, Sumin W, Matsumoto R (2005) Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quatern Int 136:131–140CrossRefGoogle Scholar
  23. Kaushal S, Binford MW (1999) Relationship between C: N ratios of lake sediments, organic matter sources, and historical deforestation of Lake Pleasant, Massachusetts, USA. J Paleolimnol 22:439–442CrossRefGoogle Scholar
  24. Kołaczek P, Mirosław-Grabowska J, Karpinska-Kołaczek M, Stachowicz-Rybka R (2015) Regional and local changes inferred from lacustrine organic matter deposited between the Late Glacial and mid-Holocene in the Skaliska Basin (northeastern Poland). Quat Int 386:158–170CrossRefGoogle Scholar
  25. Kylander ME, Klaminder J, Wohlfarth B, Löwemark L (2013) Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J Paleolimnol 50:57–70CrossRefGoogle Scholar
  26. Lane CS, Brauer A, Blockley SPE, Dulski P (2013) Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41:1251–1254CrossRefGoogle Scholar
  27. Larsen DJ, Miller GH, Geirsdóttir Á, Thordarson T (2011) A 3000-year varved record of glacier activity and climate change from the proglacial lake Hvítárvatn, Iceland. Quat Sci Rev 30:2715–2731CrossRefGoogle Scholar
  28. Last WM (2001) Textural analysis of lake sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 41–81CrossRefGoogle Scholar
  29. Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3: terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 295–325Google Scholar
  30. Leavitt PR, Brock CS, Ebel C, Patoine A (2006) Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnol Oceanogr 51(5):2262–2277CrossRefGoogle Scholar
  31. Lücke A, Brauer A (2004) Biogeochemical and micro-facial fingerprints of ecosystem response to rapid Late Glacial climatic changes in varied sediments of Meerfelder Maar (Germany). Palaeogeogr Palaeoclimatol Palaeoecol 211:139–155CrossRefGoogle Scholar
  32. Lücke A, Schleser GH, Zolitschka B, Negendank YFW (2003) A Lateglacial and Holocene organic carbon isotope record of lacustrine palaeoproductivity and climatic change derived from varved lake sediments of Lake Holzmaar, Germany. Quat Sci Rev 22:569–580CrossRefGoogle Scholar
  33. Magny M, Aalbersberg G, Bégeot C, Benoit-Ruffaldi P, Bossuet G, Disnar JR, Heiri O, Laggoun-Defarge F, Mazier F, Millet L, Peyron O, Vannière B, Walter-Simmonnet AV (2006) Environmental and climatic changes in the Jura mountains (eastern France) during the Late Glacial-Holocene transition: a multi-proxy record from Lake Lautrey. Quat Sci Rev 25:414–445CrossRefGoogle Scholar
  34. Maslov MN, Makarov MI (2016) Transformation of nitrogen compounds in the tundra soils of northern Fennoscandia. Eurasian Soil Sci 49(7):757–764CrossRefGoogle Scholar
  35. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302CrossRefGoogle Scholar
  36. Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250CrossRefGoogle Scholar
  37. Meyers PA (2003) Applications of organic geochemistry of paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  38. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900CrossRefGoogle Scholar
  39. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quatemary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  40. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 239–269Google Scholar
  41. Parplies J, Lücke A, Vos H, Mingram J, Stebich M, Radtke U, Han J, Schleser GH (2008) Late glacial environment and climate development in northeastern China derived from geochemical and isotopic investigations of the varved sediment record from Lake Sihailongwan (Jilin Province). J Paleolimnol 40:471–487CrossRefGoogle Scholar
  42. Punning JM, Koff T, Kadastik E, Mikomägi A (2005) Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, southeastern Estonia. J Paleolimnol 34:377–390CrossRefGoogle Scholar
  43. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
  44. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen ML, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Rothlisberger R, Fischer H, Goto-Azuma K, Hansson ME, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res Atmos 111:D06102CrossRefGoogle Scholar
  45. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat Sci Rev 106:14–28CrossRefGoogle Scholar
  46. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  47. Routh J, Meyers PA, Hjorth T, Baskaran M, Hallberg R (2007) Sedimentary geochemical record of recent environmental changes around Lake Middle Marviken, Sweden. J Paleolimnol 37:529–545CrossRefGoogle Scholar
  48. Salmaso N (2010) Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshw Biol 55:825–846CrossRefGoogle Scholar
  49. Schelske CL, Hodell DA (1991) Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol Oceanogr 36:961–975CrossRefGoogle Scholar
  50. Schenk F, Väliranta M, Muschitiello F, Tarasov L, Heikkilä M, Björck S, Brandefelt J, Johansson AV, Näslund JO, Wohlfarth B (2018) Warm summers during the Younger Dryas cold reversal. Nat Commun 9:1634CrossRefGoogle Scholar
  51. Schmidt R, van den Bogaard C, Merkt J, Müller J (2002) A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: the Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quat Int 88:45–56CrossRefGoogle Scholar
  52. Schwark L, Zink K, Lechterbeck J (2002) Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. Geology 30:463–466CrossRefGoogle Scholar
  53. Šeirienė V, Kabailienė M, Kasperovičienė J, Mažeika J, Petrošius R, Pauškauskus R (2009) Reconstruction of postglacial palaeoenvironmental changes in eastern Lithuania: evidence from lacustrine sediment data. Quat Int 207:58–68CrossRefGoogle Scholar
  54. Smith VH (1986) Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Can J Fish Aquat Sci 43:148–153CrossRefGoogle Scholar
  55. Sohar K, Kalm V (2008) A 12.8-ka-long palaeoenvironmental record revealed by subfossil ostracod data from lacustrine freshwater tufa in Lake Sinijärv, northern Estonia. J Paleolimnol 40:809–821CrossRefGoogle Scholar
  56. Stivrins N, Kalnina L, Veski S, Zeimule S (2014) Local and regional Holocene vegetation dynamics at two sites in eastern Latvia. Boreal Environ Res 19:310–322Google Scholar
  57. Stivrins N, Kolaczek P, Reitalu T, Seppä H, Veski S (2015) Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia. J Paleolimnol 54:103–119CrossRefGoogle Scholar
  58. Stivrins N, Soininen J, Amon L, Fontanan SL, Gryguc G, Heikkilä M, Heiri O, Kisielienė D, Reitlau T, Stančikaitė M, Veski S, Seppä H (2016) Biotic turnover rates during the Pleistocene–Holocene transition. Quat Sci Rev 151:100–110CrossRefGoogle Scholar
  59. Stivrins N, Soininen J, Tõnno I, Freiberg R, Veski S, Kisand V (2018) Towards understanding the abundance of non-pollen palynomorphs: a comparison of fossil algae, algal pigments and sedaDNA from temperate lake sediments. Rev Palaeobot Palynol 249:9–15CrossRefGoogle Scholar
  60. Terasmaa J, Puusepp L, Marzecová A, Vandel E, Vaasma T, Koff T (2013) Natural and human-induced environmental changes in Eastern Europe during the Holocene: a multi-proxy palaeolimnological study of a small Latvian lake in a humid temperate zone. J Paleolimnol 49:663–678CrossRefGoogle Scholar
  61. Tõnno I, Kirsi AL, Freiberg R, Alliksaar T, Lepane V, Kõiv T, Kisand A, Heinsalu A (2013) Ecosystem changes in large and shallow Võrtsjärv, a lake in Estonia—evidence from sediment pigments and phosphorus fractions. Boreal Environ Res 18:195–208Google Scholar
  62. Väliranta M, Kultti S, Nyman M, Sarmaja-Korjonen K (2005) Holocene development of aquatic vegetation in shallow Lake Njargajavri, Finnish, with evidence of water-level fluctuations and drying. J Paleolimnol 34:203–215CrossRefGoogle Scholar
  63. Veillette J, Martineau MJ, Antoniades D, Vincent WF (2011) Effects of loss of perennial lake ice on mixing and phytoplankton dynamics: insights from High Arctic Canada. Ann Glaciol 51:56–70CrossRefGoogle Scholar
  64. Veski S, Amon L, Heinsalu A, Reitalu T, Saarse L, Stivrins N, Vassiljev J (2012) Lateglacial vegetation dynamics in the eastern Baltic region between 14,500 and 11,400 cal yr BP: a complete record since the Bølling (GI-1e) to the Holocene. Quat Sci Rev 40:39–53CrossRefGoogle Scholar
  65. Veski S, Seppä H, Stančikaitė M, Zernitskaya V, Reitalu T, Gryguc G, Heinsalu A, Stivrins N, Amon L, Vassiljev J, Heiri O (2015) Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8 ka BP in the Baltic-Belarus area. Quat Int 388:4–11CrossRefGoogle Scholar
  66. von Grafenstein U, Erlenkeuser H, Brauer A, Jouzel J, Johnsen SJ (1999) A mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science 284:1654–1657CrossRefGoogle Scholar
  67. Wagner B, Cremer H, Hultzsch N, Gore D, Melles M (2004) Late Pleistocene and Holocene history of Lake Terrasovoje, Amery Oasis, East Antarctica, and its climatic and environmental implications. J Paleolimnol 32:321–339CrossRefGoogle Scholar
  68. Walsh C, Mac Nally R (2013) Hier.part: hierarchical partitioning. R package version 1.0-4. https://CRAN.R-project.org/package=hier.part
  69. Watanabe T, Naraoka H, Nishimura M, Kinoshita M, Kawai T (2003) Glacial-interglacial changes in organic carbon, nitrogen and sulfur accumulation in the Lake Baikal sediment over the past 250 kyr. Geochem J 37:439–502CrossRefGoogle Scholar
  70. Wohlfarth B, Schwark L, Bennike O, Filimonova L, Tarasov P, Björkman L, Brunnberg L, Demidov I, Possnert G (2004) Unstable early Holocene climatic and environmental conditions in northwestern Russia derived from a multidisciplinary study of a lake sediment sequence from Pichozero, southeastern Russian Karelia. Holocene 14(5):732–746CrossRefGoogle Scholar
  71. Wohlfarth B, Tarasov P, Bennike O, Lacourse T, Subetto D, Torssander P, Romanenko F (2006) Late glacial and Holocene palaeoenvironmental changes in the Rostov-Yaroslavl’ area, West Central Russia. J Paleolimnol 35:543–569CrossRefGoogle Scholar
  72. Wohlfarth B, Lacourse T, Bennike O, Subetto D, Tarasov P, Demidov I, Filimonova L, Sapelko T (2007) Climatic and environmental changes in north-western Russia between 15,000 and 8000 cal year BP: a review. Quat Sci Rev 26:1871–1883CrossRefGoogle Scholar
  73. Xu H, Ai L, Tan L, An Z (2006) Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chem Geol 235:262–275CrossRefGoogle Scholar
  74. Zelčs V, Markots A (2004) Deglaciation history of Latvia. In: Ehlers J, Gibbard PL (eds) Quaternary glaciations extent and chronology of glaciations. Elsevier, Amsterdam, pp 225–243Google Scholar
  75. Zelčs V, Markots A, Nartišs M, Saks T (2011) Pleistocene Glaciations in Latvia. In: Ehlers J, Gibbard PL, Hughes PD (eds) Quaternary glaciations extent and chronology of glaciations. Elsevier, Amsterdam, pp 221–229Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Merlin Liiv
    • 1
    Email author
  • Tiiu Alliksaar
    • 1
  • Leeli Amon
    • 1
  • Rene Freiberg
    • 2
  • Atko Heinsalu
    • 1
  • Triin Reitalu
    • 1
  • Leili Saarse
    • 1
  • Heikki Seppä
    • 3
  • Normunds Stivrins
    • 1
    • 4
  • Ilmar Tõnno
    • 2
  • Jüri Vassiljev
    • 1
  • Siim Veski
    • 1
  1. 1.Department of GeologyTallinn University of TechnologyTallinnEstonia
  2. 2.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  3. 3.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of Geography, Faculty of Geography and Earth SciencesUniversity of LatviaRigaLatvia

Personalised recommendations