Skip to main content

Impact of recent climate change on Lake Kanas, Altai Mountains (N.W. China) inferred from diatom and geochemical evidence

Abstract

Glacier shrinkage and melting of snow patches caused by the current phase of warming is having a profound impact on lake ecosystems located in glacierized environments at high altitude and/or latitude because it alters the hydrology and the physico-chemistry of the river discharges and catchment runoff. These changes, in turn, have a major impact on the biota of these lakes. In this study, we combined geochemical and diatom analyses of a sediment core retrieved from Lake Kanas (N.W. China) to assess how climate change has affected this ecosystem over the past ~ 100 years. Our results show that the aquatic ecosystem of Lake Kanas was sensitive to changes in the regional climate over that period of time. The lake has been affected by change in hydrology (e.g. influx of glacier meltwater, variations in precipitation) and change in hydrodynamics (water column stability). The variations in abundance and composition of the diatom assemblages observed in the sedimentary record have been subtle and are complex to interpret. The principal changes in the diatom community were: (1) a rise in diatom accumulation rates starting in the AD 1970s that is coeval with changes observed in temperate lakes of the Northern Hemisphere and (2) an increase in species diversity and assemblage turnover and a faster rate-of-change since ~ AD 2000. The diatom community is expected to change further with the projected melting of the Kanas glacier throughout the twenty-first century.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Donk EV, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  Google Scholar 

  2. Appleby PG (2000) Radiometric dating of sediment records in European mountain. J Limnol 59(suppl. 1):1–14

    Google Scholar 

  3. Appleby PG (2001) Chronostratigraphic techniques in recent sediment. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediment, vol 1. Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203

    Chapter  Google Scholar 

  4. Appleby PG, Oldfield F (1978) The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5:1–8

    Article  Google Scholar 

  5. Bai J (2012) Preliminary analysis on glacier changes characteristics of the Youyi Peak Area in the Altai Mountains in Xinjiang. Doctoral Dissertation. Northwest Normal University (in Chinese)

  6. Bao S (2000) Soil agricultural chemistry analysis. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  7. Battarbee RW, Kneen MJ (1982) The use of electronically counted microspheres in absolute diatom analysis. Limnol Oceanogr 27:184–188

    Article  Google Scholar 

  8. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediment, vol 3. Terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrect, pp 155–202

    Chapter  Google Scholar 

  9. Beaudoin A, Pienitz R, Francus P, Zdanowicz C, St-Onge G (2016) Palaeoenvironmental history of the last six centuries in the Nettilling Lake area (Baffin Island, Canada): a multi-proxy analysis. The Holocene 26:1835–1846

    Article  Google Scholar 

  10. Béguinot J (2015a) When reasonably stop sampling? How to estimate the gain in newly recorded species according to the degree of supplementary sampling effort. Annu Res Rev Biol 7:300–308

    Article  Google Scholar 

  11. Béguinot J (2015b) Extrapolation of the species accumulation curve for incomplete species samplings: a new nonparametric approach to estimate the degree of sample completeness and decide when to stop. Annu Res Rev Biol 8:1–9

    Article  Google Scholar 

  12. Birks HJB (2007) Estimating the amount of compositional change in late-Quaternary pollen-stratigraphical data. Veg Hist Archaeobot 16:197–202

  13. Birks HJB, Gordon AD (1985) Numerical methods in quaternary pollen analysis. Academic Press, London

    Google Scholar 

  14. Biskaborn BK, Herzschuh U, Bolshiyanov D, Savelieva L, Diekmann B (2012) Environmental variability in northeastern Siberia during the last ~ 13,300 yr inferred from lake diatoms and sediment–geochemical parameters. Palaeogeogr Palaeoclim Palaeoecol 329–330:22–36

    Article  Google Scholar 

  15. Brenner M, Peplow AJ, Schelske CL (1994) Disequilibrium between 226Ra and supported 210Pb in a sediment core from a shallow Florida lake. Limnol Oceanogr 39:1222–1227

    Article  Google Scholar 

  16. Brown GH (2002) Glacier meltwater hydrochemistry. Appl Geochem 17:855–883

    Article  Google Scholar 

  17. Catalan J, Pla-Rabés S, Wolfe AP, Smol JP, Rühland KM, Anderson NJ, Kopáček J, Stuchlík E, Schmidt R, Koinig KA, Camarero L, Flower RJ, Heiri O, Kamenik C, Korhola A, Leavitt PR, Psenner R, Renberg I (2013) Global change revealed by paleolimnological records from remote lakes: a review. J Paleolimnol 49:513–535

    Article  Google Scholar 

  18. Engstrom DR, Swain EB, Kingston JC (1985) A paleolimnological record of human disturbance from Harvey’s Lake, Vermont: geochemistry, pigments and diatoms. Fresh Biol 15:261–288

    Article  Google Scholar 

  19. Fedotov AP, Trunova VA, Enushchenko IV, Vorobyeva SS, Stepanova OG, Petrovskii SK, Melgunov MS, Zvereva VV, Krapivina SM, Zheleznyakova TO (2015) A 850-year record climate and vegetation changes in East Siberia (Russia), inferred from geochemical and biological proxies of lake sediments. Environ Earth Sci 73:7297–7314

    Article  Google Scholar 

  20. Gao S (1986) A study of the genesis of Kanas Lake. J Xinjiang Univ 4:68–76 (in Chinese)

    Google Scholar 

  21. Gao Q, Rioual P, Chu G (2016) Lateglacial and early Holocene climatic fluctuations recorded in the diatom flora of Xiaolongwan maar lake, NE China. Boreas 45:61–75

    Article  Google Scholar 

  22. Genkal SI, Lepskaya EV (2014) Centric diatom algae of volcanic Verkhneavachinsk Lakes (Kamchatka). Inland Water Biol 7:1–9

    Article  Google Scholar 

  23. Han F, Yang Z, Wang H, Xu X (2011) Estimating willingness to pay for environment conservation: a contingent valuation study of Kanas Nature Reserve, Xinjiang, China. Environ Monit Assess 180:451–459

    Article  Google Scholar 

  24. Hausmann S, Lotter AF (2001) Morphological variation within the diatom taxon Cyclotella comensis and its importance for quantitative temperature reconstructions. Fresh Biol 46:1323–1333

    Article  Google Scholar 

  25. Hobbs WO, Telford RJ, Birks HJB, Saros J, Hazewinkel RRO, Perren B, Saulnier-Talbot É, Wolfe AP (2010) Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. PLoS ONE 5:e10026

    Article  Google Scholar 

  26. Hofmann G, Werum M, Lange-Bertalot H (2011) Diatomeen im Süßwasser-Benthos von Mitteleuropa. A.R.G. Gantner Verlag K.G., Ruggell, p 908

    Google Scholar 

  27. Holm TM, Koinig KA, Andersen T, Donal E, Hormes A, Klaveness D, Psenner R (2012) Rapid physiochemical changes in the high Arctic Lake Kongressvatn caused by recent climate change. Aquat Sci 74:385–395

  28. IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

  29. Jansen E, Overpeck J, Briffa KR et al. (2007) Paleoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497

  30. Johnson BE, Noble PJ, Heyvaert AC, Chandra S, Karlin R (2017) Anthropogenic and climatic influences on the diatom flora within the Fallen Leaf Lake watershed, Lake Tahoe Basin, California over the last millennium. J Paleolimnol. https://doi.org/10.1007/s10933-017-9961-3

  31. Juggins S, Anderson NJ, Ramstack Hobbs JM, Heathcote AJ (2013) Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. J Paleolimnol 49:373–390

    Article  Google Scholar 

  32. Kauppila T, Kanninen A, Viitasalo M, Räsänen J, Meissner K, Mattila J (2012) Comparing long term sediment records to current biological quality element data—implications for bioassessment and management of a eutrophic lake. Limnologica 42:19–30

    Article  Google Scholar 

  33. Kies A, Nawrot A, Tosheva Z, Jania J (2011) Natural radioactive isotopes in glacier meltwater studies. Geochem J 45:423–429

    Article  Google Scholar 

  34. Kling H, Håkansson H (1988) A light and electron microscope study of Cyclotella species (Bacillariophyceae) from central and northern Canadian lakes. Diatom Res 3:55–82

    Article  Google Scholar 

  35. Krammer K, Lange-Bertalot H (1986) Süsswasserflora von Mitteleuropa. Teil 2/1. Bacillariophyceae (Naviculaceae). Gustav Fisher Verlag, Stuttgart, p 876

    Google Scholar 

  36. Krammer K, Lange-Bertalot H (1988) Süsswasserflora von Mitteleuropa. Teil 2/2. Bacillariophyceae (Bacillariaceae, Epithemiaceae, Surirellaceae). Gustav Fisher Verlag, Stuttgart, p 596

    Google Scholar 

  37. Krammer K, Lange-Bertalot H (1991a) Süsswasserflora von Mitteleuropa. Teil 2/3. Bacillariophyceae (Centrales, Fragilariaceae, Eunotiaceae). Gustav Fisher Verlag, Stuttgart, p 577

    Google Scholar 

  38. Krammer K, Lange-Bertalot H (1991b) Süsswasserflora von Mitteleuropa. Teil2/4. Bacillariophyceae (Achnanthaceae, kritische Ergänzungen zu Achnanthes s. l., Navicula s. str., Gomphonema. Gustav Fisher Verlag, Stuttgart, p 437

    Google Scholar 

  39. Li Y, Liu E, Xiao X, Zhang E, Ji M (2015) Diatom response to Asian monsoon variability during the Holocene in a deep lake at the southeastern margin of the Tibetan Plateau. Boreas 44:785–793

    Article  Google Scholar 

  40. Li Y, Qiang M, Zhang J, Huang X, Zhou A, Chen J, Wang G, Zhao Y (2017) Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China. Quat Int 452:91–101

    Article  Google Scholar 

  41. Liu CH, You GX, Pu JC (1982) Glacier inventory of China II: Altay Mountains. anzhou Institute of Glaciology and Cryopedology, Academia Sinica, Lanzhou (in Chinese)

    Google Scholar 

  42. Liu G, Jiang N, Zhang L (1996) Physical and chemical analysis of soil and profile description. Standard Press of China, Beijing

    Google Scholar 

  43. Liu X, Herzshuh U, Wang Y, Kuhn G, Yu Z (2014) Glacier fluctuations of Muztagh Ata and temperature changes during the late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records. Geophys Res Lett 41:6265–6273

    Article  Google Scholar 

  44. Liu J, Rühland KM, Chen J, Xu Y, ChenS Chen Q, Huang W, Xu Q, Chen F, Smol JP (2017) Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nature Clim Change 7:190–194

    Article  Google Scholar 

  45. Lotter AF, Pienitz R, Schmidt R (2010) Diatoms as indicators of environmental change in subarctic and alpine regions. In: Smol JP, Stoermer EF (eds) The diatoms. Applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, New York, New York, pp 231–248

    Chapter  Google Scholar 

  46. Mills K, Schillereff D, Saulnier-Talbot É, Gell P, Anderson NJ, Arnaud F, Dong X, Jones M, McGowan S, Massaferro J, Moorhouse H, Perez L, Ryves DB (2017) Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a paleolimnological puzzle. WIREs Water. 4:e1195. https://doi.org/10.1002/wat2.1195

    Article  Google Scholar 

  47. Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77

    Article  Google Scholar 

  48. Panizzo VN, Mackay AW, Rose NL, Rioual P, Leng MJ (2013) Recent paleolimnological change recorded in Lake Xiaolongwan, northeast China: climatic versus anthropogenic forcing. Quat Int 290–291:322–334

    Article  Google Scholar 

  49. Peng Y, Xiao J, Nakamura T, Liu B, Inouchi Y (2005) Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of the Daihai Lake in Inner-Mongolia of North-central China. Earth Planet Sci Lett 233:467–479

    Article  Google Scholar 

  50. Renberg I (1990) A procedure for preparing large sets of diatom slides from sediment cores. J Paleolimnol 4:87–90

    Article  Google Scholar 

  51. Rudaya N, Tarasov P, Dorofeyuk N, Solovieva N, Kalugin I, Andreev A, Daryin A, Diekmann B, Riedel F, Tserendash N, Wagner M (2009) Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quat Sci Rev 28:540–554

    Article  Google Scholar 

  52. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North America and European lakes. Glob Change Biol 14:2740–2754

    Google Scholar 

  53. Rühland K, Paterson AM, Smol JP (2015) Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–35

    Article  Google Scholar 

  54. Schaller T, Moor HC, Werli B (1997) Sedimentary profiles of Fe, Mn, V, Cr, As and Mo as indicators of benthic redox conditions in Baldeggersee. Aquat Sci 59:345–361

    Article  Google Scholar 

  55. Shang H, Wei W, Yuan Y, Yu S, Zhang T (2010) The mean June temperature history of 436a in Altay reconstructed from tree ring. J Arid Land Resour Environ 24:116–121

    Google Scholar 

  56. Shi T, Shi H (2016) Tourist attitudes toward declaring a world natural heritage program in the Kanas component, Xinjiang, China. In: Proceedings of the 2nd international conference on social science and Development

  57. Sienkiewicz E, Gąsiorowski M, Migała K (2017) Unusual reaction of diatom assemblage changes during the last millennium: a record from Spitsbergen lake. J Paleolimnol 58:73–87

    Article  Google Scholar 

  58. Slemmons KEH, Saros JE, Stone JR, McGowan S, Hess CT, Cahl D (2015) Effects of glacier meltwater on the algal sedimentary record of an alpine lake in the central US Rocky Mountains throughout the late Holocene. J Paleolimnol 53:385–399

    Article  Google Scholar 

  59. Slemmons KEH, Medford A, Hall BL, Stone JR, McGowan S, Lowell T, Kelly M, Saros JE (2017a) Changes in glacial meltwater alter algal communities in lakes of Scoresby Sund, Renland, East Greenland throughout the Holocene: abrupt reorganizations began 1000 years before present. The Holocene 27:929–940

    Article  Google Scholar 

  60. Slemmons KEH, Rodgers ML, Stone JR, Saros JE (2017b) Nitrogen subsidies in glacial meltwaters have altered planktonic diatom communities in lakes of the US Rocky Mountains for a least a century. Hydrobiologia 800:129–144

    Article  Google Scholar 

  61. Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazarova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckström J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102:4397–4402

    Article  Google Scholar 

  62. Stepanova OG, Trunova VA, Zvereva VV, Melgunov MS, Fedotov AP (2015) Reconstruction of glacier fluctuations in the East Sayan, Baikalsky and Kodar Ridges (East Siberia, Russia) during the last 210 years based on high-resolution geochemical proxies from proglacial lake bottom sediments. Environ Earth Sci 74:2019–2040

    Article  Google Scholar 

  63. ter Braak CJF, Šmilauer P (2012) CANOCO reference manual and user’s guide, software for ordination (version 5.0). Biometris, Wageningen

    Google Scholar 

  64. Tolotti M, Corradini F, Boscaini A, Calliari D (2007) Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578:147–156

    Article  Google Scholar 

  65. Torres NT, Och LM, Hauser PC, Furrer G, Brandl H, Vologina E, Sturm M, Bürgmann H, Müller B (2014) Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia. Environ Sci Process Impacts 16:879–889

    Article  Google Scholar 

  66. Vorobyeva SS, Trunova VA, Stepanova OG, Zvereva VV, Petrovskii SK, Melgunov MS, Zheleznyakova TO, Chechetkina LG, Fedotov AP (2015) Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia). Environ Earth Sci 74:2055–2063

    Article  Google Scholar 

  67. Wang L, Rioual P, Panizzo VN, Lu H, Gu Z, Chu G, Yang D, Han J, Liu J, Mackay AW (2012) A 1000-yr record of environmental change in NE China indicated by diatom assemblages from maar lake Erlongwan. Quat Res 78:24–34

    Article  Google Scholar 

  68. Wang Q, Yang X, Anderson NJ, Dong X (2016) Direct versus indirect climate controls on Holocene diatom assemblages in a sub-tropical deep, alpine lake (Lugu Hu, Yunnan, SW China). Quat Res 86:1–12

    Article  Google Scholar 

  69. Wei J, Liu S, Xu J, Guo W, Bao W, Shangguan D, Jiang Z (2015) Mass loss from glaciers in the Chinese Altai Mountains between 1959 and 2008 revealed based on historical maps, SRTM, and ASTER images. J Mt Sci 12:330–343

    Article  Google Scholar 

  70. Wolfe AP, Hobbs WO, VBirks HH, Briner JP, Holmgren SU, Ingólfsson Ó, Kaushal SS, Miller GH, Pagani M, Saros JE, Vinebrooke RD (2013) Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes. Earth-Sci Rev 116:17–34

  71. Wu J, Liu W, Zeng H, Ma L, Bai R (2014) Water quantity and quality of six lakes in the arid Xinjiang Region, NW China. Environ Process 1:115–125

    Article  Google Scholar 

  72. Wunsam S, Schmidt R, Klee R (1995) Cyclotella-taxa (Bacillariophyceae) in lakes of the alpine region and their relationship to environmental variables. Aquat Sci 57:360–386

    Article  Google Scholar 

  73. Yang J, Ryan C, Zhang L (2014) Sustaining culture and seeking a Just Destination: governments, power and tension a life-cycle approach to analysing tourism development in an ethnic-inhabited scenic area in Xinjiang, China. J Sustain Tour 22:1151–1174

    Article  Google Scholar 

  74. Yang P, Xia J, Zhang Y, Hong S (2017) Temporal and spatial variations of precipitation in Northwest China during 1960–2013. Atm Res 183:283–295

    Article  Google Scholar 

  75. Zhang C, Feng Z, Yang Q, Gou X, Sun F (2010) Holocene environmental variations recorded by organic-related and carbonate-related proxies of the lacustrine sediments from Bosten Lake, northwestern China. The Holocene 20:363–373

    Article  Google Scholar 

  76. Zhang Y, Enomoto H, Ohata T, Kitabata H, Kadota T, Hirabayashi Y (2016) Projections of glacier change in the Altai Mountains under twenty first century climate scenarios. Clim Dyn 47:2935

    Article  Google Scholar 

  77. Zhao J, Yin X, Harbor JM, Lai Z, Liu S, Li Z (2013) Quaternary glacial chronology of the Kanas River valley, Altai Mountains, China. Quat Int 311:44–51

    Article  Google Scholar 

  78. Zhu B, Yu J, Qin X, Rioual P, Zhang Y, Liu Z, Mu Y, Li H, Ren X, Xiong H (2013) Identification of rock weathering and environmental control in arid catchments (northern Xinjiang) of Central Asia. J Asian Earth Sci 66:277–294

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wanna Jia for the coring of sediments from Lake Kanas and Zhongyan Zhang for helping with diatom analysis. We are grateful to two anonymous reviewers for their helpful comments on an earlier version of the manuscript. This project was supported by the National Basic Research Program of China (No. 41571182) and by the National Science Foundation of China (No. 41790422).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Patrick Rioual or Xiaozhong Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 316 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Rioual, P., Peng, W. et al. Impact of recent climate change on Lake Kanas, Altai Mountains (N.W. China) inferred from diatom and geochemical evidence. J Paleolimnol 59, 461–477 (2018). https://doi.org/10.1007/s10933-018-0019-y

Download citation

Keywords

  • Cyclotella sensu lato
  • Climate warming
  • Glacier meltwater
  • Xinjiang
  • XRF