Advertisement

Journal of Paleolimnology

, Volume 58, Issue 2, pp 231–241 | Cite as

Water depth is a strong driver of intra-lake diatom distributions in a small boreal lake

  • Cale A. C. GushulakEmail author
  • Kathleen R. Laird
  • Joseph R. Bennett
  • Brian F. Cumming
Original paper

Abstract

There has been much debate over the relative importance of environmental selection and spatial variation on community organization in microorganisms. To assess the importance of environmental or spatial variables in diatom species assemblages in Gall Lake, northwest Ontario, 41 surface-sediment samples were collected in a two-dimensional gridded pattern along and across depth contours. A depth-constrained cluster analysis separated the diatom flora into three communities: a shallow-water benthic zone (B1); a deeper-water benthic zone (B2); and a planktonic zone (P). Redundancy analysis (RDA) confirmed that water depth was a major predictor of variation in the flora. Further RDAs and variation partitioning using orthogonal polynomials and Moran’s eigenvector maps showed that spatial location had minimal effect on the diatom assemblages. Principal components analysis grouped the diatom flora not only by assemblage, but also by water depth, regardless of two-dimensional spatial separation, suggesting the importance of the environmental gradients associated with lake depth. These findings indicate that environment is a more important explanatory variable than spatial variables for diatoms within lakes, suggesting dispersal plays a limited role in intra-lake diatom distributions.

Keywords

Diatoms Spatial variables Environmental selection Depth Northwest Ontario 

Notes

Acknowledgements

This project was funded through NSERC Discovery Grants to BFC and JRB. We thank Moumita Karmakar for assistance in the field.

References

  1. Beisner BE, Peres-Neto PR, Lindström ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991CrossRefGoogle Scholar
  2. Bennett JR, Cumming BF, Ginn BK, Smol JP (2010) Broad-scale environmental response and niche conservatism in lacustrine diatom communities. Glob Ecol Biogeogr 19:724–732Google Scholar
  3. Bennion H, Simpson GL (2011) The use of diatom records to establish reference conditions for UK lakes subject to eutrophication. J Paleolimnol 45:469–488CrossRefGoogle Scholar
  4. Berthon V, Bouchez A, Rimet F (2011) Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673:259–271CrossRefGoogle Scholar
  5. Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632CrossRefGoogle Scholar
  6. Blanco S, Cejudo-Figueiras C, Álvarez-Blanco I, Van Donk E, Gross EM, Hansson LA, Irvine K, Jeppesen E, Kairesalo T, Moss B, Nõges T, Bécares E (2014) Epiphytic diatoms along environmental gradients in western European shallow lakes. Clean Soil Air Water 42:229–235CrossRefGoogle Scholar
  7. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  8. Bradbury JP, Winter TC (1976) Areal distribution and stratigraphy of diatoms in the sediments of Lake Sallie, Minnesota. Ecology 57:1005–1014CrossRefGoogle Scholar
  9. Brugam RB, McKeever K, Kolesa L (1998) A diatom-inferred water depth reconstruction for an Upper Peninsula, Michigan, lake. J Paleolimnol 20:267–276CrossRefGoogle Scholar
  10. Camburn KR, Charles DF (2000) Diatoms of low-alkalinity lakes in the northeastern United States. Academy of Natural Sciences Special Pub 18, PhiladelphiaGoogle Scholar
  11. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182CrossRefGoogle Scholar
  12. Dixit S, Dixit AS, Smol JP (1991) Multivariable environmental inferences based on diatom assemblages from Sudbury (Canada) lakes. Freshw Biol 26:251–266CrossRefGoogle Scholar
  13. Dixit SS, Smol JP, Kingston JC, Charles DF (1992) Diatoms: powerful indicators of environmental change. Environ Sci Technol 26:22–33CrossRefGoogle Scholar
  14. Dixit SS, Keller W, Dixit AS, Smol JP (2001) Diatom-inferred dissolved organic carbon reconstructions provide assessments of past UV-B penetration in Canadian Shield lakes. Can J Fish Aquat Sci 58:543–550CrossRefGoogle Scholar
  15. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  16. Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71CrossRefGoogle Scholar
  17. Fallu M, Allaire N, Pienitz R (2000) Freshwater diatoms from northern Quebec and Labrador (Canada) bibliotheca diatomologica band 45. Gebru¨der Borntraeger, BerlinGoogle Scholar
  18. Fritz SC (1990) Twentieth-century salinity and water-level fluctuations in Devils Lake, North Dakota: test of a diatom-based transfer function. Limnol Oceanogr 35:1771–1781CrossRefGoogle Scholar
  19. Garmo ØA, Skjelkvåle BL, de Wit HA, Colombo L, Curtis C, Fölster J, Hoffmann A, Hruška J, Høgåsen T, Jeffries DS, Keller WB, Krám P, Majer V, Monteith D (2014) Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut 225:1–14CrossRefGoogle Scholar
  20. Gilbert B, Bennett JR (2010) Partitioning variation in ecological communities: do the numbers add up? J Appl Ecol 47:1071–1082CrossRefGoogle Scholar
  21. Glew JR (1989) A new trigger mechanism for sediment samplers. J Paleolimnol 2:241–243CrossRefGoogle Scholar
  22. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell, MaldenGoogle Scholar
  23. Karmakar M, Kurek J, Haig H, Cumming BF (2014) Consensus among multiple trophic levels during high-and low-water stands over the last two millennia in a northwest Ontario lake. Quat Res 81:251–259CrossRefGoogle Scholar
  24. Karst TL, Smol JP (2000) Paleolimnological evidence of limnetic nutrient concentration equilibrium in a shallow, macrophyte-dominated lake. Aquat Sci 62:20–38CrossRefGoogle Scholar
  25. Keller WB, Heneberry J, Leduc J, Gunn J, Yan N (2006) Variations in epilimnion thickness in small boreal shield lakes: relationships with transparency, weather and acidification. Environ Monit Assess 115:419–431CrossRefGoogle Scholar
  26. Kingsbury MV, Laird KR, Cumming BF (2012) Consistent patterns in diatom assemblages and diversity measures across water-depth gradients from eight Boreal lakes from north-western Ontario (Canada). Freshw Biol 57:1151–1165CrossRefGoogle Scholar
  27. Koppen JD (1975) A morphological and taxonomic consideration of Tabellaria (Bacillariophyceae) from the northcentral United States. J Phycol 11:236–244Google Scholar
  28. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 1: Teil: Naviculaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, StuttgartGoogle Scholar
  29. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2: Teil: Bacillariaceae, Epithmiaceae, Surirellaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, StuttgartGoogle Scholar
  30. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 3:Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig J, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, StuttgartGoogle Scholar
  31. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. 4:Teil: Achnanthaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, StuttgartGoogle Scholar
  32. Laird KR, Cumming BF (2008) Reconstruction of Holocene lake level from diatoms, chrysophytes and organic matter in a drainage lake from the Experimental Lakes Area (northwestern Ontario, Canada). Quat Res 69:292–305CrossRefGoogle Scholar
  33. Laird KR, Kingsbury MV, Cumming BF (2010) Diatom habitats, species diversity and water-depth inference models across surface-sediment transects in Worth Lake, northwest Ontario, Canada. J Paleolimnol 44:1009–1024CrossRefGoogle Scholar
  34. Laird KR, Kingsbury MV, Lewis CM, Cumming BF (2011) Diatom-inferred depth models in 8 Canadian boreal lakes: inferred changes in the benthic: planktonic depth boundary and implications for assessment of past droughts. Quat Sci Rev 30:1201–1217CrossRefGoogle Scholar
  35. Laird KR, Haig HA, Ma S, Kingsbury MV, Brown TA, Lewis CF, Oglesby RJ, Cumming BF (2012) Expanded spatial extent of the medieval climate anomaly revealed in lake-sediment records across the boreal region in northwest Ontario. Glob Change Biol 18:2869–2881CrossRefGoogle Scholar
  36. Lange-Bertalot H, Melzeltin D (1996) Indicators of oligotrophy, vol 2. Koeltz Scientific Books, Königstein, Iconographia DiatomologicaGoogle Scholar
  37. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  38. Legendre P, Legendre LF (2012) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  39. Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141CrossRefGoogle Scholar
  40. Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112CrossRefGoogle Scholar
  41. Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BR, Jeffries DS, Vuorenmaa J, Keller B, Kopácek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540CrossRefGoogle Scholar
  42. Moos MT, Laird KR, Cumming BF (2005) Diatom assemblages and water depth in Lake 239 (Experimental Lakes Area, Ontario): implications for paleoclimatic studies. J Paleolimnol 34:217–227CrossRefGoogle Scholar
  43. Pace ML, Cole JJ (2002) Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanogr 47:333–342CrossRefGoogle Scholar
  44. Passy SI (2010) A distinct latitudinal gradient of diatom diversity is linked to resource supply. Ecology 91:36–41CrossRefGoogle Scholar
  45. Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of ecological communities. Glob Ecol Biogeogr 19:174–184CrossRefGoogle Scholar
  46. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625CrossRefGoogle Scholar
  47. Potapova MG, Charles DF (2002) Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. J Biogeogr 29:167–187CrossRefGoogle Scholar
  48. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org
  49. Reavie E, Smol JP (2001) Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. J Paleolimnol 25:25–42CrossRefGoogle Scholar
  50. Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171CrossRefGoogle Scholar
  51. Roulet N, Moore TR (2006) Environmental chemistry: browning the waters. Nature 444:283–284CrossRefGoogle Scholar
  52. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:2740–2754Google Scholar
  53. Saros JE, Anderson NJ (2015) The ecology of the planktonic diatom Cyclotella and its implications for global environmental change studies. Biol Rev 90:522–541CrossRefGoogle Scholar
  54. Skjelkvåle BL, Stoddard JL, Andersen T (2001) Trends in surface water acidification in Europe and North America (1989–1998). Water Air Soil Pollut 130:787–792CrossRefGoogle Scholar
  55. Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655CrossRefGoogle Scholar
  56. Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011CrossRefGoogle Scholar
  57. Snucins E, Gunn J (2000) Interannual variation in the thermal structure of clear and colored lakes. Limnol Oceanogr 45:1639–1646CrossRefGoogle Scholar
  58. Soininen J (2007) Environmental and spatial control of freshwater diatoms—a review. Diatom Res 22:473–490CrossRefGoogle Scholar
  59. Soininen J, Könönen K (2004) Comparative study of monitoring South-Finnish rivers and streams using macroinvertebrate and benthic diatom community structure. Aquat Ecol 38:63–75CrossRefGoogle Scholar
  60. Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States. https://westerndiatoms.colorado.edu. Accessed Jan 2017
  61. Stevenson RJ, Stoermer EF (1981) Quantitative differences between benthic algal communities along a depth gradient in Lake Michigan. J Phycol 17:29–36CrossRefGoogle Scholar
  62. Tilman D, Kareiva PM (1997) Spatial ecology: the role of space in population dynamics and interspecific interactions, vol 30. Princeton University Press, PrincetonGoogle Scholar
  63. Van Eaton AR, Harper MA, Wilson CJ (2013) High-flying diatoms: widespread dispersal of microorganisms in an explosive volcanic eruption. Geology 41:1187–1190CrossRefGoogle Scholar
  64. Vellend M (2016) The theory of ecological communities (MPB-57). Princeton University Press, PrincetonCrossRefGoogle Scholar
  65. Worrall F, Harriman R, Evans CD, Watts CD, Adamson J, Neal C, Tipping E, Burt T, Grieve I, Monteith D, Naden PS, Nisbet T, Stevens P (2004) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry 70:369–402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Paleoecological Environmental Assessment and Research Laboratory (PEARL), Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.Department of BiologyCarleton UniversityOttawaCanada

Personalised recommendations