Skip to main content

Advertisement

Log in

Geochemical history of a Lower Miocene lake, the Cypris Formation, Sokolov Basin, Czech Republic

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The intracontinental Lower Miocene Cypris paleo-lake originated during progressive subsidence in the Sokolov Basin, part of the Cenozoic Ohře Rift, after the deposition of coal seams. The Cypris Fm. consists almost entirely of lacustrine clays with variable mineral composition and organic matter, where this succession is 70–120 m thick. The main objective of this study was to interpret the geochemical history of the Lower Miocene Cypris Fm. using high-resolution, down-core geochemical records and study of the organic matter. This work revealed that the lower part of the lacustrine sediment sequence was deposited in a freshwater lake, in an open hydrological system. An increase in the K/Zr and K/Ti ratios towards the upper part of the Cypris Fm. indicates a gradual increase in the pelitic fraction of the local sediments and/or a decline in input of volcanic material. Simultaneously, increasing Ca/K and Sr/K ratios indicate the precipitation of carbonates, predominantly dolomite and siderite. In the upper part of the Cypris Fm., there is a significant increase in Na/K, Na/Zr, and Na/Ti ratios, suggesting increasing salinity (alkalinity) of the paleoenvironment in a closed hydrological system. Reaction between the Na-rich water and clastic components of the sediment in an alkaline medium gave rise to the formation of zeolites, mixed-layer clay minerals and smectite. Abundant remains of aquatic organisms, especially algae, increased with greater salinity in the upper part of the Cypris Fm. This is reflected in the greater hydrogen index (HIRock Eval), and the growing proportion of liptinite group macerals of aquatic origin in the bulk organic matter. During the entire history of sedimentation in the Miocene lake, repetitive changes in the sediment geochemistry occurred at both micro- and macroscales, and fluctuations of K/Ti, K/Zr, and Sr/Ca ratios over meters to tens of meters are observed. These changes probably reflect either long-term climate fluctuations during the Lower Miocene or oscillations caused by changes in the rate of subsidence of the basin floor. Variations in the elemental composition of sediments can be used to correlate individual boreholes across the entire sedimentary basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Böhme M (2003) The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeocl Palaeoecol 195:389–401

    Article  Google Scholar 

  • Bůžek Č, Holý F (1981) Fruits of halophilous water plants (Limnocarpus c. Reid, Potamogetonaceae, Dumortier) in the Cypris Formation of the Cheb and Sokolov Basins. Sborník geologických věd Paleontologie 24:163–177

    Google Scholar 

  • Cajz V, Rapprich V, Erban V, Pécskay Z, Radoň M (2009) Late Miocene volcanic activity in the České Středohoří Mountains (Ohře/Eger Graben, northern Bohemia). Geol Carpathica 60:519–533

    Article  Google Scholar 

  • Davison W (1993) Iron and manganese in lakes. Earth Sci Rev 34:119–163

    Article  Google Scholar 

  • Dopita M, Havlena V, Pešek J (1985) Deposits of fossil fuels. State Publishing House of Technical Literature, Prague (in Czech with English abstract)

    Google Scholar 

  • Drever JI (1982) The geochemistry of natural waters: surface and groundwater environments. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • ECE-UN (1998) International classification of in-seam coals. Economic Commission for Europe, Committee on Sustainable Energy, United Nations, p 114

    Google Scholar 

  • Elznic A, Čadková Z, Dušek P (1998) Palaeogeography of tertiary sediments of the North Bohemian Basin. Sborník geologických věd 48:19–46 (in Czech with English abstract)

    Google Scholar 

  • English PM (2001) Formation of analcime and moganite at Lake Lewis, central Australia: significance of groundwater evolution in diagenesis. Sediment Geol 143:219–244

    Article  Google Scholar 

  • Fagel N, Boski T, Likhoshway L, Oberhaensli H (2003) Late Quaternary clay mineral record in Central Lake Baikal (Academician Ridge, Siberia). Palaeogeogr Palaeoclim Palaeoecol 193:159–179

    Article  Google Scholar 

  • Fejfar O (1989) Neogene vertebrate paleontology sites of Czechoslovakia: a contribution to the Neogene terrestric biostratigraphy of Europe based on rodents. In: Lindsay EH, Fahlbush V, Mein P (eds) Proceedings of a NATO advanced research workshop on European neogene mammal chronology. Plenum Press, New York, pp 211–236

    Google Scholar 

  • Fishman NS, Hackley PC, Lowers HA, Hill RJ, Egenhoff SO, Eberl DD, Blum AE (2012) The nature of porosity in organic-rich mudstones of the Upper Jurassic Kimmeridge Clay Formation, North Sea, offshore United Kingdom. Int J Coal Geol 103:32–50

    Article  Google Scholar 

  • Franz SO, Schwark L, Brüchmann C, Scharf B, Klingel R, Van Alstine JD, Çagatay N, Ülgen UB (2006) Results from a multi-disciplinary sedimentary pilot study of tectonic Lake Iznik (NW Turkey)—geochemistry and paleolimnology of the recent past. J Paleolimnol 35:715–736

    Article  Google Scholar 

  • Havelcová M, Sýkorová I, Trejtnarová H, Šulc A (2012) Identification of organic matter in lignite samples from basins in the Czech Republic: geochemical and petrographic properties in relation to lithotype. Fuel 99:129–142

    Article  Google Scholar 

  • Havelcová M, Sýkorová I, Mach K, Trejtnarová H, Blažek J (2015) Petrology and organic geochemistry of the lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). Int J Coal Geol 139:26–39

    Article  Google Scholar 

  • ICCP (2001) The new inertinite classification (ICCP system 1994). Fuel 80:459–471

    Article  Google Scholar 

  • Jin Z, An Z, Yu J, Zhang F (2015) Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial. Quat Sci Rev 122:63–73

    Article  Google Scholar 

  • Kadlec J, Chadima M, Schnabl M, Šifnerová K, Šlechta S, Pruner P, Rojík P, Martínek K (2011) Rock magnetism and magnetic fabric of the Mi Formation as indicators of paleoenvironmental changes in the Sokolov Basin (NW Bohemia).—Miroslav Krs conference: time, magnetism, records, systems and solutions. The 2011 annual IGCP 580 meeting, Prague, October 12–18, 2011. Abstract Volume: 30

  • Kříbek B, Strnad M, Boháček Z, Sýkorová I, Čejka J, Sobalík Z (1998) Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin, Czech Republic. Int J Coal Geol 37:207–233

    Article  Google Scholar 

  • Kvaček Z, Konzalová M, Obrhelová N (1987) Biostratigraphy and the environment of sedimentation of Cypris Formation claystones of West Bohemian Tertiary. MS., ÚGG ČSAV Prague, 21 p (in Czech with English summary)

  • Kylander ME, Klaminder J, Wohlfarth B, Löwenmark L (2013) Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J Paleolimnol 50:57–70

  • Li HC, Ku TL (1997) δ13C–δ18O covariance as a paleohydrologic indicator for closed-basin lakes. Palaeogeogr Palaeoclimatol Palaeoecol 133:69–80

    Article  Google Scholar 

  • Mach K, Teodoridis V, Matys Grygar T, Kvaček Z, Suhr P, Standke G (2014) An evaluation of palaeogeography and palaeoecology in the Most Basin (Czech Republic) and Saxony (Germany) from the late Oligocene to the early Miocene. N Jb Geol Paläont Abh 272:13–45

    Article  Google Scholar 

  • Matys Grygar T, Mach K (2013) Regional chemostratigraphic key horizons in the macrofossil-barren siliciclastic lower Miocene lacustrine sediments (Most Basin, Eger Graben, Czech Republic). Bull Geosci 88:557–571

    Article  Google Scholar 

  • Matys Grygar T, Mach K, Schnablis P, Pruner P, Laurin J, Martinez M (2014) A lacustrine record of the early stage of the Miocene climatic optimum in Central Europe from the Most Basin, Ohře (Eger) Graben, Czech Republic. Geol Mag 151:1013–1033

    Article  Google Scholar 

  • McQueen K (2008) Regolith geochemistry. In: Scott KM, Pain CF (eds) Regolith science. Springer Science and CSIRO Publishing, Berlin, pp 74–104

    Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. Proc Nat Acad Sci 18:14964–14969

    Article  Google Scholar 

  • Naeher S, Gilli A, North RP, Hamann Y, Schubert CJ (2013) Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chem Geol 352:125–133

    Article  Google Scholar 

  • Oana S, Deevey ES (1960) Carbon 13 in lake waters and its possible bearing on paleolimnology. Am J Sci 258A:253–272

    Google Scholar 

  • Potter PE, Maxnard JB, Pryor WA (1980) Sedimentology of shale. Springer, New York

    Book  Google Scholar 

  • Rajchl M, Uličný D, Matys Grygar R, Mach K (2009) Evolution and basin architecture in an incipient continental rift: the Cenozoic Most Basin, Eger Graben (Central Europe). Basin Res 21:269–294

    Article  Google Scholar 

  • Renac C, Bodergat AM, Gerbe M-C, Gal F (2013a) Intracontinental Miocene: reconstruction of hydrology and paleoclimate change in the Forez Basin, France (Part II). Sediment Geol 288:16–39

    Article  Google Scholar 

  • Renac C, Michon G, Gonord H, Gerbe M-C (2013b) Intracontinental Miocene: climate and paleolake volumes in the Forez Basin, France (Part I). Sediment Geol 288:1–15

    Article  Google Scholar 

  • Rimmer SM, Thompson JA, Goodnight AA, Robl TL (2004) Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeogr Palaeoclimatol Palaeoecol 215:125–154

    Article  Google Scholar 

  • Rojík P, Dašková J, Kvaček Z, Pešek J, Sýkorová I, Teodoridis V (2014) The Sokolov Basin. In: Pešek J (ed) Tertiary basins and lignite deposits of the Czech Republic. Czech Geol Survey, Prague, pp 90–142

    Google Scholar 

  • Roy PD, Smykatz-Kloss W, Sinh R (2006) Late Holocene geochemical history inferred from Sambhar and Didwana playa sediments, Thar Desert, India: comparison and synthesis. Quatern Int 144:84–98

    Article  Google Scholar 

  • Roy PD, Caballero M, Lozano R, Smykatz-Kloss W (2008a) Geochemistry of late quaternary sediments from Tecocomulco lake, central Mexico: implication to chemical weathering and provenance. Chem Erde 68:383–393

    Article  Google Scholar 

  • Roy PD, Smykatz-Kloss W, Morton O (2008b) Geochemical zones and reconstruction of late Holocene environments from shallow core sediments of the Pachapadra paleo-lake, Thar Desert, India. Chem Erde 68:313–322

    Article  Google Scholar 

  • Roy PD, Caballero M, Lozano R, Ortega B, Lozano S, Pi T, Israde I, Morton O (2010) Geochemical record of Late Quaternary paleoclimate from lacustrine sediments of paleo-lake San Felipe, western Sonora Desert, Mexico. J S Am Earth Sci 29:586–596

    Article  Google Scholar 

  • Sabel M, Bechtel A, Püttman W, Hoernes S (2005) Palaeoenvironment of the Eocene Eckfeld Maar Lake (Germany): implications for geochemical analysis of the oil shale sequence. Org Geochem 36:873–891

    Article  Google Scholar 

  • Schettler G, Liu Q, Mingram JL, Negendank JFW (2006) Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (Northeast China, Jilin province). Part 1: hydrological conditions and dust flux. J Paleolimnol 35:239–270

    Article  Google Scholar 

  • Séranne M (1999) Early Oligocene stratigraphic turnover on the West Africa continental margin: a signature of the tertiary greenhouse-to-icehouse transition? Terra Nova 11:135–140

    Article  Google Scholar 

  • Skála R, Ulrych J, Ackerman L, Jelínek E, Dostál J, Hegner E, Řanda Z (2014) Tertiary alkaline Roztoky Intrusive Complex, České středohoří Mts., Czech Republic: petrogenetic characteristics. Int J Earth Sci (Geol Rundsch) 103:1233–1262. doi:10.1007/s00531-013-0948-7

    Article  Google Scholar 

  • Šmejkal V (1976) Isotope geochemistry of sulfur, carbon and oxygen in Cypris Formation of the Sokolov and Cheb basins. Unpublished report No. GF P025149, Czechoslovak Geological Survey, Prague (in Czech with English abstract)

  • Šmejkal V (1978) Isotopic geochemistry of the Cypris Formation in the Cheb basin, West Bohemia: I. Sulfur isotopes in sulfates and pyrites. Věst Ústř Úst Geol 53:3–18

    Google Scholar 

  • Šmejkal V (1984) Isotopic composition of carbonates and differences in deposition environment during the Miocene lacustrine sedimentation in the Krušné Hory graben. - ZFI - Mitteilungen 84: 372–379. Akademie der Wissenschaften der DOR, Zentralinstitut flir lsotopen- und Strahlenforschung. Leipzig

  • Stuiver M (1964) Carbon isotopic distribution and correlated chronology of Searles Lake sediments. Am J Sci 262:377–382

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1970) Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters. Wiley Interscience, New York

    Google Scholar 

  • Surdam RC, Eugster HP (1976) Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geol Soc Am Bull 87:1739–1752

    Article  Google Scholar 

  • Sýkorová I, Pickel W, Christanis K, Wolf M, Taylor GH, Flores D (2005) Classification of huminite—ICCP System 1994. Int J Coal Geol 62:85–106

    Article  Google Scholar 

  • Taylor GH, Teichmüller M, Davis A, Diesel CFK, Littke R, Robert P (1998) Organic Petrology. Gebrüder Borntraeger, Berlin, p 256

    Google Scholar 

  • Teichmüller M, Ottenjan K (1977) Art and Diagenese von Liptiniten und lipoiden Stoffen in einem Erdölmuttergestein auf Grund fluorescenzmikroskopischer Untersuchungen. Erdöl Kohle 30:387–398

    Google Scholar 

  • Teodoridis V, Kvaček Z (2006) Paleobotanical research of the Early Miocene deposits overlying the main coal seam (Libkovice and Lom Members) in the Most Basin (Czech Republic). Bull Geosci 81:93–113

    Article  Google Scholar 

  • Wennrich V, Minyuk PS, Borkhodoev V, Francke A, Ritter B, Nowaczyk NR, Sauerbrey MA, Brigham-Grette J, Melles M (2014) Pliocene to Pleistocene climate and environmental history of Lake El´gygytgyn, Far East Russian Arctic, based on high resolution inorganic geochemistry data. Clim Past 10:1381–1399

    Article  Google Scholar 

  • Woodruff F, Savin SM, Douglas RG (1981) Miocene stable isotopic record: a detailed deep Pacific Ocean study and its paleoclimatic implications. Science 212:665–668

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants 205/09/1162 and 206/09/1642 from the Czech Science Foundation and an Internal Grant of the Czech Geological Survey No. 321 410). We thank Dr. Juraj Franců (Czech geological Survey, branch Brno) for performing the Rock Eval, TOC and TIC analyses. We are indebted to Jiří Adamovič and Madeleine Štulíkova for corrections to the English. The technical support provided by the Sokolovská uhelná, Ltd. mining company is highly appreciated. We appreciate the very valuable comments and suggestions of an anonymous reviewer and Co-Editor in Chief Mark Brenner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohdan Kříbek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10933_2017_9970_MOESM1_ESM.pdf

Fig. S1 Comparison of Zr and As concentrations in rocks penetrated by borehole Dp 333-09 using a portable X-ray fluorescence-apparatus (PXRF), and by the ICP-MS method carried out in the ACME Chemical Laboratories, Canada (PDF 134 kb)

10933_2017_9970_MOESM2_ESM.pdf

Fig. S2 Photomicrographs of major types of the Cypris Fm. claystones; a massive claystone without apparent lamination with black clasts of organic matter of the coal type. The lower part of the Cypris Fm; b Massive texture of a claystone with high content of disseminated carbonate grains represented mostly by ankerite and siderite. The lower part of the Cypris Fm; c A laminated Cypris Fm. claystone, the upper part of the Cypris Fm. Lamination is a result of alternating dark brown layers formed mainly of clay minerals and quartz, light brown layers consisting of organic matter of algal type. Transmitted light, without polarizers (PDF 174 kb)

10933_2017_9970_MOESM3_ESM.pdf

Fig. S3 Photomicrographs of claystones of Cypris Fm. (back scattered electrons, BSE); a Continuous laminae of organic matter (dark gray) in claystones from the upper part of the Cypris Fm.; b A close-up of a lamina rich in organic matter with remnants of calcified algal filaments (white); c Clastic grain of K-feldspar (orthoclase) lined with darker water-rich phase low in potassium (PDF 123 kb)

10933_2017_9970_MOESM4_ESM.pdf

Fig. S4 A photomicrograph of the Cypris Fm. claystone very rich in analcime. The rock is composed of a clay matrix, which encloses numerous authigenic grains of analcime, smaller clastic grains of potassium feldspars, carbonates (ankerite-siderite), fragments of detrital mica, and pyritized plant tissues. The upper part of the Cypris Fm. Back scattered electrons; b-h Distribution of the individual elements. Interpretation of the results is shown in Fig. 3 (PDF 214 kb)

10933_2017_9970_MOESM5_ESM.pdf

Fig. S5 Photomicrographs of organic matter particles in the Cypris Fm. claystones. Drillcore Dp 333-09; a Fragment of humified and partly gellified wood cell tissue including huminite macerals: textinite (Te), ulminite (Ul), corpohuminite (Ch). Depth: 57.18 m; b Resinite particles (Re) fill cell volumes in a tissue remnant. Organic carbon-poor sample, depth: 69.66 m; c Fragments of lamalginite (La) and telaginite (Ta) with small particles of bituminite (Bi) and liptodetrinite (Ld) dispersed in clay matrix. Depth: 48.46 m; d Organic carbon-rich laminae composed of dark lamalginite (La) and lamelar bituminite (Lb) in clay matrix. Depth: 35.98 m; e Organic carbon-rich position of the Cypris Formation claystone composed of lamalginite laminae (bright yellow, La) in the lamalginite and bituminite groundmass (Lb) with scattered inertinite fragments (black) and fine-grained quartz grains (Q). Depth: 35.46 m; f Framboidal and crystalline pyrite (Py) in yellow fluorescent telalginite (Al) dispersed in mineral matrix. Depth: 73.56 m; a, b, c, d reflected light, oil immersion; c, e, f fluorescence mode, dry objective (PDF 137 kb)

10933_2017_9970_MOESM6_ESM.pdf

Fig. S6 Boreholes Dp 333-09 and Jp 585-09 and the Rb/K, Mn/Fe ratios and As concentrations in both boreholes. The contents of As reflect pyrite occurrence (PDF 121 kb)

10933_2017_9970_MOESM7_ESM.pdf

Fig. S7 Repetition of thinly laminated, organic carbon-rich positions of claystones (yellow) with layers of carbonate-rich claystones (gray) in the upper part of the Cypris Fm. Organic carbon-rich claystone positions contain 8–9 wt% of organic matter of algal origin (kerogen Type I), the bedding surfaces are covered with fragments of quartz, mica and detrital quartz, presumably of eolian origin. Layers of carbonate as much as 30 cm thick show distinct lamination, and indicate either warmer climatic periods or periods of increased salinity/alkalinity, when lake water was oversaturated with CaCO3 (PDF 187 kb)

10933_2017_9970_MOESM8_ESM.pdf

Table S1 Matrix of Spearman’s correlation coefficients for sediments of the Cypris Formation. Upper triangle, PXRF data, number of samples: 1635 (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kříbek, B., Knésl, I., Rojík, P. et al. Geochemical history of a Lower Miocene lake, the Cypris Formation, Sokolov Basin, Czech Republic. J Paleolimnol 58, 169–190 (2017). https://doi.org/10.1007/s10933-017-9970-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-9970-2

Keywords

Navigation