Skip to main content

Advertisement

Log in

Recognition and mapping of lacustrine relict coastal features using high resolution aerial photographs and LiDAR data

  • Note
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Shallow lakes in semiarid regions experience frequent water level fluctuations. Each long-lasting episode of water-level lowering leaves behind abandoned littoral forms and deposits whose identification and mapping is hampered by their smooth relief. Given the difficulty of recognising these possible relict forms using traditional geomorphological techniques, two sources of information were employed in the present work: high resolution (1:15,000) aerial photographs and a digital terrain model (DTM) generated from LiDAR data. The improved definition of surface elevation enhanced the quality of geomorphological mapping as well as the accurate delineation of subtle geoforms. The method was applied to Gallocanta Lake, a highly fluctuating shallow lake 14 km2 in area and less than 3 m deep located in a mountainous semiarid area of NE Spain. As a result, a sequence of relict coastal features (RCF) with high lateral continuity has been identified around the lakebed. These include well-preserved spits with recurved hooks, counter-spits, bays closed by barrier islands, beach ridges, deltas and cliffs. The highly precise LiDAR-derived topographic maps suggest a much greater extension of the lacustrine environment during the Late Pleistocene, reaching at least 51 km2 of water surface and about 13 m of depth above the present lake bottom. The method presented in this paper generates very detailed palaeogeographical maps that are particularly useful for reconstructing lake changes in semiarid environments as a function of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu Ghazleh S, Kempe S (2009) Geomorphology of Lake Lisan terraces along the eastern coast of the Dead Sea, Jordan. Geomorphology 108:246–263

    Article  Google Scholar 

  • Bañuls-Cardona S, López-García JM, Blain HA, Lozano-Fernández I, Cuenca-Bescós G (2014) The end of the last glacial maximum in the Iberian Peninsula characterized by the small-mammal assemblages. J Iber Geol 40:19–27

    Article  Google Scholar 

  • Barber CP, Shortridge A (2005) Lidar elevation data for surface hydrologic modeling: resolution and representation issues. Cartogr Geogr Inf 32(4):401–410

    Article  Google Scholar 

  • Bishop MP, James LA, Shroder JF, Walsh SJ (2012) Geospatial technologies and digital geomorphological mapping: concepts, issues and research. Geomorphology 137:5–26

    Article  Google Scholar 

  • Blair TC (1999) Sedimentology of gravelly Lake Lahontan highstand shoreline deposits, Churchill Butte, Nevada, USA. Sediment Geol 123:199–218

    Article  Google Scholar 

  • Bowman D (1971) Geomorphology of the shore terraces of the late Pleistocene Lisan Lake Israel. Palaeogeogr Palaclimatol Palaeocol 9:183–209

    Article  Google Scholar 

  • Bowman D, Banet-Davidovich D, Bruins HJ, Van der Plicht J (2000) Dead Sea shoreline facies with seismically induced soft-sediment deformation structures, Israel. Isr J Earth Sci 49:197–214

    Article  Google Scholar 

  • Burbank DK, Anderson RS (2012) Tectonic geomorphology. Wiley-Blackwell, Hoboken, p 288

    Google Scholar 

  • Burrough SL, Thomas DSG (2009) Geomorphological contributions to palaeolimnology on the African continent. Geomorphology 103:285–298

    Article  Google Scholar 

  • Burrough SL, Thomas DSG, Shaw PA, Bailey RM (2007) Multiphase quaternary highstands at Lake Ngami, Kalahari, northern Botswana. Palaeogeogr Palaeoclimatol Palaeocol 253:280–299

    Article  Google Scholar 

  • Castañeda C, Gracia FJ, Meyer A, Romeo R (2013) Coastal landforms and environments in the central sector of Gallocanta saline lake (Iberian Range, Spain). J Maps 9:584–589

    Article  Google Scholar 

  • Castañeda C, Gracia FJ, Luna E, Rodríguez R (2015) Edaphic and geomorphic evidences of water level fluctuations in Gallocanta Lake, NE Spain. Geoderma 239–240:265–279

    Article  Google Scholar 

  • Chiverrell RC, Thomas GSP, Foster GC (2008) Sediment–landform assemblages and digital elevation data: testing an improved methodology for the assessment of sand and gravel aggregate resources in north-western Britain. Eng Geol 99:40–50

    Article  Google Scholar 

  • Comín FA, Rodó X, Comín P (1992) Lake Gallocanta (Aragón, NE Spain), a paradigm of fluctuations at different scales of time. Limnetica 8:79–86

    Google Scholar 

  • Currey DR (1994) Hemiarid lake basins: geomorphic patterns. In: Abrahams AD, Parsons AJ (eds) Geomorphology of desert environments. Chapman and Hall, London, pp 422–444

    Chapter  Google Scholar 

  • De Gelder G, Fernández-Blanco D, Lacassin R, Armijo R, Delorme A, Jara-Muñoz J, Melnick D (2015) Corinth terraces re-visited: improved paleoshoreline determination using Pleiades-DEMs. Geotecton Res 97:12–14

    Article  Google Scholar 

  • Directive INSPIRE 2007. Official Journal of the European Union L 108/1. http://eur-lex.europa.eu/eli/dir/2007/2/oj. Accessed 08 March 2017

  • Ghienne JF, Schuster M, Bernard A, Duringer P, Brunet M (2002) The Holocene giant Lake Chad revealed by digital elevation models. Quat Int 87:81–85

    Article  Google Scholar 

  • Giese GS, Mague ST, Rogers SS (2009) A geomorphological analysis of Nauset Beach/Pleasant Bay/Chatham Harbor for the purpose of estimating future configurations and conditions. Provincetown Center for Coastal Studies, Provincetown, p 31

    Google Scholar 

  • Gomez C, Hayakawa Y, Obanawa H (2015) A study of Japanese landscapes using structure form motion derived DSMs and DEMs based on historical aerial photographs: new opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology 242:11–20

    Article  Google Scholar 

  • Goudie AS (2013) Arid and semiarid environments. Cambridge University Press, Cambridge, p 454

    Google Scholar 

  • Goy JL, Zazo C, Dabrio CJ (2003) A beach-ridge progradation complex reflecting periodical sea-level and climate variability during the Holocene (Gulf of Almería, Western Mediterranean). Geomorphology 50:251–268

    Article  Google Scholar 

  • Gracia FJ (1995) Shoreline forms and deposits in Gallocanta Lake (NE Spain). Geomorphology 11:323–335

    Article  Google Scholar 

  • Gracia FJ (2014) Gallocanta Saline Lake, Iberian Chain. In: Gutiérrez F, Gutiérrez M (eds) Landscapes and Landforms of Spain. Springer, Dordrecht, pp 137–144

    Chapter  Google Scholar 

  • Gracia FJ, Gutiérrez F, Gutiérrez M (2002) Origin and evolution of the Gallocanta polje (Iberian Range, NE Spain). Z Geomorphol 46:245–262

    Google Scholar 

  • Hare JL, Ferguson JF, Aiken CLV, Oldow JS (2001) Quantitative characterization and elevation estimation of Lake Lahontan shoreline terraces from high-resolution digital elevation models. J Geophys Res 106:26761–26774

    Article  Google Scholar 

  • Hudson AM, Quade J, Huth TE, Lei G, Cheng H, Edwards LR, Olsen JW, Zhang H (2015) Lake level reconstruction for 12.8–2.3 ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau. Quat Res 83:66–79

    Article  Google Scholar 

  • Jara-Muñoz J, Melnick D, Strecker M (2015) TerraceM: A Matlab® tool to analyze marine terraces from high-resolution topography. Geophys Res Abstracts 17, EGU2015-11480-3

  • Jones KL, Poole GC, O’Daniel SJ, Mertes LAK, Stanford JA (2008) Surface hydrology of low-relief landscapes: assessing surface water flow impedance using LIDAR-derived digital elevation models. Remote Sens Environ 112(11):4148–4158

    Article  Google Scholar 

  • Kumar A, Narayana AC, Jayappa KS (2010) Shoreline changes and morphology of spits along southern Karnataka, west coast of India: a remote sensing and statistics-based approach. Geomorphology 120:133–152

    Article  Google Scholar 

  • Lees BG, Cook PG (1991) A conceptual model of lake barrier and compound lunette formation. Palaeogeogr Palaeocol 84:271–284

    Article  Google Scholar 

  • Luzón A, Pérez A, Mayayo MJ, Soria AR, Goñi MFS, Roc AC (2007) Holocene environmental changes in the Gallocanta lacustrine basin, Iberian Range, NE Spain. The Holocene 17:649–663

    Article  Google Scholar 

  • Martínez-Cob A, Zapata N, Sánchez I (2010) Viento y riego. La variabilidad del viento en Aragón y su influencia en el riego por aspersión. Institución Fernando El Católico, Zaragoza, p 200. http://ifc.dpz.es/recursos/publicaciones/29/72/_ebook.pdf. Accesed 08 Dec 2016

  • Mermut AR, Acton DF (1984) The age of some Holocene soils on the Ear Lake terraces in Saskatchewan. Can J Soil Sci 64:163–172

    Article  Google Scholar 

  • Newell WL, Clark I (2008) Geomorphic map of Worcester County, Maryland, Interpreted from a LIDAR-based, digital elevation model. U.S. Geological Survey Open-File Report 2008–1005, p 34

  • Ocakoglu F, Kir O, Yilmaz IÖ, Açikalin S, Erayik C, Tunoglu C, Leroy SAG (2013) Early to Mid-Holocene lake level and temperature records from the terraces of Lake Sünnet in NW Turkey. Palaeogeogr Palaeocol 369:175–184

    Article  Google Scholar 

  • Otto JC, Mike J, Smith MJ (2013) Geomorphological mapping. Geomorphological techniques, Chap 2, Sect 6

  • Otvos EG (2000) Beach ridges—definitions and significance. Geomorphology 32:83–108

    Article  Google Scholar 

  • Saksena S, Merwade V (2015) Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping. J Hydrol 530:180–194

    Article  Google Scholar 

  • Schumann G, Matgen P, Cutler MEJ, Black A, Hoffmann L, Pfister L (2008) Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J Photogramm 63(3):283–296

    Article  Google Scholar 

  • Schuster M, Roquin C, Duringer P, Brunet M, Caugy M, Fontugne M, Ht Mackaye, Vignaud P, Ghienne JF (2005) Holocene Lake Mega-Chad palaeoshorelines from space. Quat Sci Rev 24:1821–1827

    Article  Google Scholar 

  • Skorko K, Jewell PW, Nicoll K (2012) Fluvial response to an historic lowstand of the Great Salt Lake, Utah. Earth Surf Process 37:143–156

    Article  Google Scholar 

  • Smith MJ (2011) Digital mapping: visualisation, interpretation and quantification of landforms. In: Smith MJ, Paron P, Griffiths JS (eds) Geomorphological mapping: methods and applications, developments in Earth surface processes, 15. Elsevier, London, pp 225–249

    Chapter  Google Scholar 

  • Suanez S, Provansal M (1998) Large scale evolution of the littoral of the Rhone Delta (Southeast France). J Coastal Res 14:493–501

    Google Scholar 

  • Tarolli P, Dalla Fontana G (2009) Hillslope-to-valley transition morphology: new opportunities from high resolution DTMs. Geomorphology 113:47–56

    Article  Google Scholar 

  • Tarolli P, Sofia G, Dalla Fontana G (2012) Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Nat Hazards 61:65–83

    Article  Google Scholar 

  • Thompson TA, Baedke SJ (1995) Beach-ridge development in Lake Michigan: shoreline behavior in response to quasi-periodic lake-level events. Mar Geol 129:163–174

    Article  Google Scholar 

  • Timms BV (1992) Lake Geomorphology. Gleneagles Publishing, Adelaide, p 180

    Google Scholar 

  • Turmel D, Locat J, Parker G (2015) Morphological evolution of a well-constrained, subaerial-subaqueous source to sink system: Wabush Lake. Sedimentology 62:1636–1664

    Article  Google Scholar 

  • White SA, Wang Y (2003) Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline. Remote Sens Environ 85(1):39–47

    Article  Google Scholar 

  • Woolard JW, Colby JD (2002) Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: cape Hatteras, North Carolina. Geomorphology 48:269–287

    Article  Google Scholar 

  • Zenkovich VP (1967) Processes of coastal development. Oliver and Boyd, Edinburgh, p 378

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) under the project PCIN-2014-106 and by the Spanish Research Council (CSIC) under the project i-COOP-2016SU0015. Two anonymous reviewers and the Editor have helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Castañeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañeda, C., Gracia, F.J. Recognition and mapping of lacustrine relict coastal features using high resolution aerial photographs and LiDAR data. J Paleolimnol 58, 89–99 (2017). https://doi.org/10.1007/s10933-017-9956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-9956-0

Keywords

Navigation