Skip to main content
Log in

Stable carbon isotopes (δ13C) of total organic carbon and long-chain n-alkanes as proxies for climate and environmental change in a sediment core from Lake Petén-Itzá, Guatemala

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Sediment core PI-6 from Lake Petén Itzá, Guatemala, possesses an ~85-ka record of climate and environmental change from lowland Central America. Variations in sediment lithology suggest large and abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. We measured stable carbon isotope ratios of total organic carbon and long-chain n-alkanes from the core, the latter representing a largely allochthonous (terrestrial) source of organic matter, to reveal past shifts in the relative proportion of C3–C4 terrestrial biomass. We sought to test whether stable carbon isotope results were consistent with other paleoclimate proxies measured in the PI-6 core, and if extraction and isotope analysis of n-alkanes is warranted. The largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the last glacial maximum indicate moderate precipitation with little fluctuation. The deglacial was a period of pronounced climate variability, e.g. a relatively warm and moist Bølling–Allerød, but a cool and dry Younger Dryas. Arid periods of the deglacial were inferred from samples with high δ13C values in total organic carbon, which reflect times of greater proportions of C4 plants. These inferences are supported by stable isotope measurements on ostracod shells and relative abundance of grass pollen from the same depths in core PI-6. Similar trends in carbon stable isotopes measured on bulk organic carbon and n-alkanes suggest that carbon isotope measures on bulk organic carbon in sediments from this lake are sufficient to infer past climate-driven shifts in local vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[modified from Hodell et al. (2008)]

Fig. 2
Fig. 3

[modified from Mueller et al. (2010)]. Depths sampled for carbon isotope analysis are shown as dots on the lithology column. Additional data columns include δ13C of bulk organic carbon and C29, C31, and C33 n-alkanes. Next are plots of the relative abundance (%) of Poaceae (grass) pollen, percent organic carbon (%TOC), percent total nitrogen (%TN), and atomic C/N. An age scale is provided on the right side of the plot, based on AMS radiocarbon dates on terrestrial organic matter and a basal age on volcanic ash

Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  Google Scholar 

  • Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6:457–474

    Article  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  • Bush MB, Correa-Metrio AY, Hodell DA, Brenner M, Anselmetti FS, Ariztegui D, Mueller A, Curtis JH, Grzesik DA, Burton C, Gilli A (2009) Re-evaluation of climate change in lowland Central America during the Last Glacial Maximum using new sediment cores from Lake Petén Itzá, Guatemala. In: Vimeux F, Sylvestre F, Khodri M (eds) Past climate variability in South America and surrounding regions: from the last glacial maximum to the Holocene. Developments in paleoenvironmental research, vol 14. Springer, New York, pp 113–128

    Chapter  Google Scholar 

  • Castañeda IS, Werne JP, Johnson TC (2007) Wet and arid phases in the southeast African tropics since the last glacial maximum. Geology 35:823–826

    Article  Google Scholar 

  • Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–345

    Article  Google Scholar 

  • Chikaraishi Y, Naraoka H (2003) Compound-specific delta D–delta C-13 analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63:361–371

    Article  Google Scholar 

  • Collister JW, Rieley G, Stern B, Eglinton G, Fry B (1994) Compound-specific (delta C-13) analyses of leaf lipids from differing carbon dioxide metabolisms. Org Geochem 21:619–627

    Article  Google Scholar 

  • Correa-Metrio A, Bush MB, Hodell DA, Brenner M, Escobar J, Guilderson T (2012) The influence of abrupt climate change on the ice-age vegetation of the Central American lowlands. J Biogeogr 39:497–509

    Article  Google Scholar 

  • Curtis JH, Brenner M, Hodell DA, Balser RA, Islebe GA, Hooghiemstra H (1998) A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala. J Paleolimnol 19:139–159

    Article  Google Scholar 

  • Deevey ES, Brenner M, Flannery MS, Yezdani GH (1980) Lakes Yaxha and Sacnab, Peten, Guatemala: limnology and hydrology. Archiv Hydrobiol Suppl 57:419–460

    Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  • Escobar J, Hodell DA, Brenner M, Curtis JH, Gilli A, Mueller AD, Anselmetti FS, Ariztegui D, Grzesik DA, Perez L, Schwalb A, Guilderson TP (2012) A ~43-ka record of paleoenvironmental change in the Central American lowlands inferred from lacustrine ostracod δ18O. Quat Sci Rev 37:92–104

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  Google Scholar 

  • Ficken KJ, Li B, Sain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  Google Scholar 

  • Gu B, Schelske CL, Brenner M (1996) Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci 53:875–883

    Article  Google Scholar 

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Röhl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308

    Google Scholar 

  • Hillesheim MB, Hodell DA, Leyden BW, Brenner M, Curtis JH, Anselmetti FS, Ariztegui D, Buck DG, Guilderson TP, Rosenmeier MF, Schnurrenberger DW (2005) Climate change in lowland Central America during the late Deglacial and early Holocene. J Quat Sci 20:363–376

    Article  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH, Guilderson T (2001) Solar forcing of drought frequency in the Maya Lowlands. Science 292:1367–1370

    Article  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH, Medina-González R, Ildefonso-Chan Can E, Albornaz-Pat A, Guilderson TP (2005) Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res 63:109–121

    Article  Google Scholar 

  • Hodell DA, Anselmetti FS, Ariztegui D, Brenner M, Curtis JH, Gilli A, Grzesik DA, Guilderson TJ, Müller AD, Bush MB, Correa-Metrio A, Escobar J, Kutterolf S (2008) An 85-ka record of climate change in lowland Central America. Quat Sci Rev 27:1152–1165

    Article  Google Scholar 

  • Hodell DA, Turchyn AV, Wiseman CJ, Escobar J, Curtis JH, Brenner M, Gilli A, Mueller AD, Anselmetti F, Ariztegui D, Brown ET (2012) Late glacial temperature and precipitation changes in the lowland Neotropics by tandem measurement of delta O-18 in biogenic carbonate and gypsum hydration water. Geochim Cosmochim Acta 77:352–368

    Article  Google Scholar 

  • Huang Y, Street-Perrott FA, Metcalfe SE, Brenner M, Moreland M, Freeman KH (2001) Climate change as the dominant control on glacial-interglacial variations in C-3 and C-4 plant abundance. Science 293:1647–1651

    Article  Google Scholar 

  • Hughen KA, Eglinton TI, Xu L, Makou M (2004) Abrupt tropical vegetation response to rapid climate changes. Science 304:1955–1959

    Article  Google Scholar 

  • Kutterolf S, Freundt A, Pérez W, Mörz T, Schacht U, Wehrmann H, Schmincke Hu (2008) Pacific off-shore record of plinian arc volcanism in Central America: 1. Along-arc correlations. Geochem Geophys Geosyst 9:Q02S01

    Google Scholar 

  • Leyden BW (1984) Guatemalan forest synthesis after Pleistocene aridity. Proc Nat Acad Sci USA 81:4856–4859

    Article  Google Scholar 

  • Leyden BW, Brenner M, Hodell DA, Curtis JH (1993) Late Pleistocene climate in the Central American lowlands. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Geophysical monograph No. 78, American Geophysical Union, Washington, DC, pp 165–178

  • Leyden BW, Brenner M, Hodell DA, Curtis JH (1994) Orbital and internal forcing of climate on the Yucatan Peninsula for the past ca. 36 ka. Paleogeogr Paleoclimatol Paleoecol 109:193–210

    Article  Google Scholar 

  • Lichtfouse E, Derenne S, Mariotti A, Largeau C (1994a) Possible algal origin of long chain n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Org Geochem 22:1023–1027

    Article  Google Scholar 

  • Lichtfouse E, Elbisser B, Balesdent J, Mariotii A, Bardoux G (1994b) Isotope and molecular evidence for direct input of maize leaf wax n-alkanes into crop soils. Org Geochem 22:349–351

    Article  Google Scholar 

  • Lundell CL (1937) The vegetation of Peten. Carnegie Institution publication No. 478. Carnegie Institution, Washington, DC

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments: physical and geological methods, vol 2. Kluwer, Dordrecht, pp 239–270

    Chapter  Google Scholar 

  • Mueller AD, Islebe GA, Hillesheim MB, Grzesik DA, Anselmetti FS, Ariztegui D, Brenner M, Curtis JH, Hodell DA, McKenzie JA, Venz-Curtis KA (2009) Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quat Res 71:133–141

    Article  Google Scholar 

  • Mueller AD, Anselmetti FS, Ariztegui D, Brenner M, Hodell DA, Curtis JH, Escobar J, Gilli A, Grzesik DA, Guilderson TP, Kutterolf S, Plotze M (2010) Late Quaternary palaeoenvironment of northern Guatemala: evidence from deep drill cores and seismic stratigraphy of Lake Petén Itzá. Sedimentology 57:1220–1245

    Google Scholar 

  • Newell SD (2005) An analysis of compound specific carbon isotopes of lipid biomarkers: a proxy for paleoenvironmental change in the Maya lowlands of Petén, Guatemala. M.S. thesis, University of Florida, Gainesville

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemisty 20:553–567

    Article  Google Scholar 

  • Pérez L, Bugja R, Lorenschat J, Brenner M, Curtis J, Hoelsmann P, Scharf B, Schwalb A (2011) Aquatic ecosystems of the Yucatan Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661:407–433

    Article  Google Scholar 

  • Reimer PJ et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 yr cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick FA (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352:425–427

    Article  Google Scholar 

  • Rose WI, Conway FM, Pullinger CR, Deino A, McIntosh WC (1999) An improved age framework for late Quaternary silicic eruptions in northern Central America. Bull Volcanol 61:106–120

    Article  Google Scholar 

  • Rosenmeier MF, Brenner M, Kenney WF, Whitmore TJ, Taylor CM (2004) Recent eutrophication in the southern basin of Lake Petén Itzá, Guatemala: human impact on a large tropical lake. Hydrobiologia 511:161–172

    Article  Google Scholar 

  • Schefuss E, Raymeyer V, Stuut SBW, Jansen JHF, Damste JSS (2003) Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim Cosmochim Acta 67:1757–1767

    Article  Google Scholar 

Download references

Acknowledgements

We thank the following institutions and individuals in Guatemala who provided assistance to this project: Universidad del Valle, Universidad San Carlos, Ministerio de Ambiente y Recursos Naturales, Consejo Nacional de Areas Protegidas, Instituto de Antropología e Historia, Autoridad Para el Manejo y Desarrollo Sostenible de la Cuenca del Lago Petén-Itzá, Wildlife Conservation Society, Alex Arrivillaga, Cathy Lopez, Margaret Dix, Michael Dix, Margarita Palmieri, David, Rosita, and Kelsey Kuhn, and the staff at La Casa de Don David, Lico Godoy, Tony Ortiz, Franz Sperisen, Luis Toruño, Julian Tesucún, Liseth Perez, Melisa Orozco, Silja Ramirez, Gabriela Alfaro, and Jacobo Blijdenstein. We are grateful to our collaborators from Geoforschungszentrum (Potsdam), Swiss Federal Institute of Technology (Zurich), Université de Genève, and the personnel from DOSECC (Drilling, Observation and Sampling of the Earth’s Continental Crust). Many thanks to Anders Noren, Kristina Brady and Amy Myrbo (LacCore) for assistance with field sampling, core curation and sample preparation. We thank three anonymous reviewers for their thoughtful comments on the original manuscript. This project was funded by grants from the US National Science Foundation (ATM-0502030 and ATM-0502126), the International Continental Scientific Drilling Program, the Swiss Federal Institute of Technology, and the Swiss National Science Foundation. Radiocarbon dating was done at the US DOE Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. Curtis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mays, J.L., Brenner, M., Curtis, J.H. et al. Stable carbon isotopes (δ13C) of total organic carbon and long-chain n-alkanes as proxies for climate and environmental change in a sediment core from Lake Petén-Itzá, Guatemala. J Paleolimnol 57, 307–319 (2017). https://doi.org/10.1007/s10933-017-9949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-017-9949-z

Keywords

Navigation