Past environmental change and seawater intrusion into coastal Lake Lilaste, Latvia

Abstract

Diatoms, organic matter and magnetic susceptibility in a 10-m-long sediment sequence from coastal Lake Lilaste, Latvia, were analysed to evaluate Holocene environmental changes related to past sea-water intrusions. Lake Lilaste is located ~1 km from the present sea coast in an area with a low uplift rate and a threshold altitude of 0.5 m a.s.l. It was thus considered to be an appropriate site to study the influence of past sea level fluctuations on the lake and its sediments. Variations in diatom community composition, along with sediment lithostratigraphy, show that a shallow, nutrient-rich freshwater lake existed there during the early Holocene. The first brackish-water diatoms appeared concurrent with a sea level rise ca. 8700 ± 50 cal a BP, but long-term, intermittent inputs of brackish water were observed between 6700 ± 40 and 4200 ± 80 cal a BP. During those time spans, diatoms indicate increased nutrient concentrations and high conductivity, a consequence of occasional mixing of brackish and freshwater that promoted biological productivity. Lilaste was isolated from the sea at 4200 ± 80 cal a BP, after which a stable freshwater environment, dominated by planktonic diatoms such as Aulacoseira ambigua, A. granulata, A. islandica and A. subarctica, was established. At 400 ± 50 cal a BP, planktonic diatoms were gradually replaced by Fragilaria spp., indicating the beginning of anthropogenic impact. The reconstructed relative water-level curve from the lake coincides with the eustatic sea level curve from 6800 ± 40 cal a BP onwards. There was a distinct increase in abundance of brackish-water diatoms when the sea level reached the threshold of Lilaste, which at that time was probably about 3 m lower than the present sea level. According to radiocarbon-dated shifts in the diatom community composition, the Litorina Sea transgression was a long-lasting event (ca. 2200 years) in the southern part of the Gulf of Riga, where the land uplift rate was near zero. It culminated more than 1000 years later than at other sites with higher uplift, in the northern part of the Baltic Sea.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson NJ (1990) The biostratigraphy and taxonomy of small Stephanodiscus and Cyclostephanos species (Bacillariophyceae) in a eutrophic lake, and their ecological implications. Br Phycol J 25:217–235

    Article  Google Scholar 

  2. Anderson NJ (2000) Diatoms, temperature and climatic change. Eur J Phycol 35:307–314

    Google Scholar 

  3. Andrén E, Andrén T, Sohlenius G (2000) The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas 29:233–250

    Article  Google Scholar 

  4. Andrén T, Lindeberg G, Andrén E (2002) Evidence of the final drainage of the Baltic Ice Lake and the brackish phase of the Yoldia Sea in glacial varves from the Baltic Sea. Boreas 31:226–238

    Article  Google Scholar 

  5. Andrén T, Björck S, Andrén E, Conley D, Zillén L, Anjar J (2011) The development of the Baltic Sea basin during the last 130 ka. In: Harff J, Björck S, Hoth P (eds) The Baltic Sea basin. Springer, Berlin, pp 75–97

    Chapter  Google Scholar 

  6. Balascio NL, Zhang A, Bradley R, Perren B, Dahl SO, Bakke J (2011) A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway. Quat Res 75:288–300

    Article  Google Scholar 

  7. Battarbee R, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last W (eds) Tracking environmental change using lake sediments, vol. 3: terrestrial, algal, and siliceous indicator. Kluwer Academic Publishers, Dordrecht, pp 155–202

    Google Scholar 

  8. Berglund BE, Sandgren P, Barnekow L, Hannon G, Jiang H, Skog G, Yu SY (2005) Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, south–eastern Sweden. Quat Internat 130:111–139

    Article  Google Scholar 

  9. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Article  Google Scholar 

  10. Bronk Ramsey C, Lee S (2013) Recent and planned developments of the program OxCal. Radiocarbon 55:720–730

    Article  Google Scholar 

  11. Corner DC, Yevzerov VY, Kolka VV, Møller JJ (1999) Isolation basin stratigraphy and Holocene relative sea-level change at the Norwegian-Russian border north of Nikel, northwest Russia. Boreas 28:146–166

    Article  Google Scholar 

  12. Eberhards G (2003) The Sea coast of Latvia. Morphology, structure, coastal processes, risk zones, forecast, coastal protection and monitoring. University of Latvia, Riga

    Google Scholar 

  13. Ekman M (1996) A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:158–165

    Article  Google Scholar 

  14. Eronen M, Glückert G, Hatakka L, van de Plassche O, van der Plicht J, Rantala P (2001) Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in SW Finland based on studies of isolation contacts. Boreas 30:17–30

    Article  Google Scholar 

  15. Grimm E (2011) Tilia software v. 1.7.16. Illinois State Museum. Research and Collection Center, Springfield

    Google Scholar 

  16. Grinbergs E (1957) Pozdnelednikovaja i poslelednikovaja istorija poberezhja Latvijskoj SSR. Late glacial and post glacial history of the coastal area of Latvian SSR, Academy of Sciences of Latvian SSR Publ, Riga (in Russian)

  17. Grudzinska I, Saarse L, Vassiljev J, Heinsalu A (2013) Mid- and late-Holocene shoreline changes along the southern coast of the Gulf of Finland. Bull Geol Soc Finl 85:19–34

    Google Scholar 

  18. Grudzinska I, Saarse L, Vassiljev J, Heinsalu A (2014) Biostratigraphy, shoreline changes and origin of the Limnea Sea lagoons in northern Estonia: the case study of Lake Harku. Baltica 27:15–24

    Article  Google Scholar 

  19. Haworth EY (1975) A scanning electron microscope study of some different frustule forms of the genus Fragilaria found in Scottish late-glacial sediments. Br Phycol J 10:73–80

    Article  Google Scholar 

  20. Head PC (1976) Organic processes in estuaries. In: Burton JD, Liss PS (eds) Estuarine chemistry. Academic Press, London, pp 53–91

    Google Scholar 

  21. Heinsalu A, Alliksaar T, Leeben A, Nõges T (2007) Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Peipsi (Estonia/Russia). Hydrobiologia 584:133–143

    Article  Google Scholar 

  22. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  23. Hill MO, Gauch HG (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 87:47–58

    Article  Google Scholar 

  24. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  25. Jevrejeva S, Moore JC, Grinsted A (2012) Sea level projections to AD 2500 with a new generation of climate change scenarios. Glob Planet Change 80:14–20

    Article  Google Scholar 

  26. Kilham P (1990) Ecology of Melosira species in the Great Lakes of Africa. In: Tilzer MM, Serruya C (eds) Large Lakes. Ecological structure and function. Springer, Berlin, pp 414–427

    Google Scholar 

  27. Krammer K, Lange-Bertalot H (1986) Bacillariophyaceae 1. Teil Naviculaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D (eds) Süsswasserflora von Mitteleuropa 2/1. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  28. Krammer K, Lange-Bertalot H (1988) Bacillariophyaceae 2. Teil Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D (eds) Süsswasserflora von Mitteleuropa 2. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  29. Krammer K, Lange-Bertalot H (1991a) Bacillariophyaceae 3. Teil Centrales, Fragilariceae, Eunotiaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D (eds) Süsswasserflora von Mitteleuropa 2/3. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  30. Krammer K, Lange-Bertalot H (1991b) Bacillariophyaceae 4. Teil Achnanthaceae. In: Ettl H, Gerloff J, Heying H, Mollenhauser D (eds) Süsswasserflora von Mitteleuropa 2/4. Gustav Fisher Verlag, Stuttgart

    Google Scholar 

  31. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci USA 111:15296–15303

    Article  Google Scholar 

  32. Lindén M, Möller P, Björck S, Sandgren P (2006) Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas 35:1–22

    Article  Google Scholar 

  33. Long AJ, Woodroffe SA, Roberts DH, Dawson S (2011) Isolation basins, sea-level changes and the Holocene history of the Greenland Ice Sheet. Quat Sci Rev 30:3748–3768

    Article  Google Scholar 

  34. Miettinen A (2004) Holocene sea-level changes and glacio-isostasy in the Gulf of Finland, Baltic Sea. Quat Internat 120:91–104

    Article  Google Scholar 

  35. Mörner NA (1979) The Fennoscandian uplift and Late Cenozoic in geodynamics: geological evidence. GeoJournal 3:287–318

    Article  Google Scholar 

  36. Nowaczyk NR (2001) Logging of magnetic susceptibility. In: Last W, Smol JP (eds) Tracking environmental change using lake sediments, vol. 1: basin analysis, coring, and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 155–170

    Google Scholar 

  37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) vegan: Community Ecology Package. R package version 2.0-7

  38. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  39. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther B, Clausen HB, Siggaard-Andersen ML, Johnsen SJ, Larsen LB, Dahl-Jensen D, Bigler M, Röthlisberger R, Fischer H, Goto-Azuma K, Hansson M, Ruth U (2006) A new Greenland ice core chronology for the last glacial termination. J Geophys Res 111:1–16

    Article  Google Scholar 

  40. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes P, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal 13 and Marine 13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  41. Risberg J, Alm G, Goslar T (2005) Variable isostatic uplift patterns during the Holocene in southeast Sweden, based on high-resolution AMS radiocarbon datings of lake isolations. Holocene 15:847–857

    Article  Google Scholar 

  42. Rosentau A, Muru M, Kriiska A, Subetto DA, Vassiljev J, Hang T, Gerasimov D, Nordqvist K, Ludikova A, Lõugas L, Raig H, Kihno K, Aunap R, Letyka N (2013) Stone Age settlement and Holocene shore displacement in the Narva-Luga Klint Bay area, eastern Gulf of Finland. Boreas 42:912–931

    Google Scholar 

  43. Saarse L, Vassiljev J, Miidel A (2003) Simulation of the Baltic Sea Shorelines in Estonia and Neighbouring areas. J Coast Res 19:261–268

    Google Scholar 

  44. Saarse L, Vassiljev J, Miidel A, Niinemets E (2007) Buried organic sediments in Estonia related to the Ancylus Lake and Litorina Sea. Applied Quaternary research in the central part of glaciated terrain. Geol Surv Finl Spec Pap 46:87–92

    Google Scholar 

  45. Saarse L, Heinsalu A, Veski S (2009a) Litorina Sea sediments of ancient Vääna Lagoon, northwestern Estonia. Est J Earth Sci 58:85–93

    Article  Google Scholar 

  46. Saarse L, Vassiljev J, Rosentau A (2009b) Ancylus Lake and Litorina Sea transition on the Island of Saaremaa, Estonia: a pilot study. Baltica 22:51–62

    Google Scholar 

  47. Seppä H, Weckström J (1999) Holocene vegetational and limnological changes in the Fennoscandian tree-line are documented by pollen and diatom records from Lake Tsuolbmajavri, Finland. Ecoscience 6:621–635

    Article  Google Scholar 

  48. Seppä H, Tikkanen M, Shemeikka P (2000) Late-Holocene shore displacement of the Finnish south coast: diatom, litho- and chemostratigraphic evidence from three isolation basins. Boreas 29:219–231

    Article  Google Scholar 

  49. Shear H, Nalewajko C, Bacchus HM (1976) Some aspects of the ecology of Melosira spp. in Ontario lakes. Hydrobiologia 50:173–176

    Article  Google Scholar 

  50. Shennan I, Green F, Innes J, Lloyd J, Rutherford M, Walker K (1996) Evaluation of rapid sea-level changes in North-West Scotland during the last glacial-interglacial transition: evidence from Ardtoe and other isolation basins. J Coast Res 12:862–874

    Google Scholar 

  51. Shennan I, Lambeck K, Horton B, Innes J, Lloyd J, McArthur J, Purcell T, Rutherford M (2000) Late Devesian and Holocene records of relative sea-level changes in northwest Scotland and their implications for glacio-hydro-isostatic modelling. Quat Sci Rev 19:1103–1135

    Article  Google Scholar 

  52. Snoeijs P (1993) Intercalibration and distribution of diatom species in the Baltic Sea 1. Opulus Press, Uppsala

    Google Scholar 

  53. Snoeijs P, Balashova J (1998) Intercalibration and distribution of diatom species in the Baltic Sea 5. Opulus Press, Uppsala

    Google Scholar 

  54. Snoeijs P, Kasperovičienė J (1996) Intercalibration and distribution of diatom species in the Baltic Sea 4. Opulus Press, Uppsala

    Google Scholar 

  55. Snoeijs P, Potapova M (1995) Intercalibration and distribution of diatom species in the Baltic Sea 3. Opulus Press, Uppsala

    Google Scholar 

  56. Snoeijs P, Vilbaste S (1994) Intercalibration and distribution of diatom species in the Baltic Sea 2. Opulus Press, Uppsala

    Google Scholar 

  57. Vassiljev J, Saarse L (2013) Timing of the Baltic Ice Lake in the eastern Baltic. Bull Geol Soc Finl 85:5–14

    Google Scholar 

  58. Veinbergs I (1979) The Quaternary history of the Baltic. Latvia. In: Gudelis V, Königsson LK (eds) The Quaternary history of the Baltic. Acta Univ Ups, Uppsala, pp 147–157

    Google Scholar 

  59. Veski S, Seppä H, Stančikaitė M, Zernitskaya V, Reitalu T, Gryguc G, Heinsalu A, Stivrins N, Amon L, Vassiljev J, Heiri O (2015) Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15 and 8 ka BP in the Baltic-Belarus area. Quat Internat 388:4–11

    Article  Google Scholar 

  60. Weckström K, Juggins S (2005) Coastal diatom-environment relationships from the Gulf of Finland, Baltic Sea. J Phycol 42:21–35

    Article  Google Scholar 

  61. Westman P, Hedenström A (2002) Environmental changes during isolation processes from the Litorina Sea as reflected by diatoms and geochemical parameters—a case study. Holocene 12:497–506

    Article  Google Scholar 

  62. Witak M (2013) A review of the diatom research in the Gulf of Gdansk and Vistula Lagoon (southern Baltic Sea). Oceanol Hydrobiol Stud 42:336–346

    Google Scholar 

  63. Witak M, Dunder J, Laśniewska M (2011) Chaetoceros resting spores as indicators of Holocene palaeoenvironmental changes in the Gulf of Gdańsk, southern Baltic Sea. Oceanol Hydrobiol Stud 40:21–29

    Article  Google Scholar 

  64. Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts I. Iconographia diatomologica 7. A.R.G. Gantner Verlag K.G., Ruggell

    Google Scholar 

  65. Yu SY, Berglund BE, Andrén E, Sandgren P (2004) Mid-Holocene Baltic Sea transgression along the coast of Blekinge, SE Sweden—ancient lagoons correlated with beach ridges. GFF 126:257–272

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to A. Heinsalu for useful comments and suggestions for improving the manuscript. The study was supported by ESF Grant 9031, IUT 1-8 and the Doctoral Studies and Internationalisation Programme DoRa. We are grateful for feedback from two anonymous reviewers and Co-Editor-in-Chief Mark Brenner.

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Grudzinska.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Supplementary material 2 (DOC 43 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grudzinska, I., Vassiljev, J., Saarse, L. et al. Past environmental change and seawater intrusion into coastal Lake Lilaste, Latvia. J Paleolimnol 57, 257–271 (2017). https://doi.org/10.1007/s10933-017-9945-3

Download citation

Keywords

  • Litorina Sea
  • Diatoms
  • Relative sea level
  • AMS dates
  • Holocene
  • Baltic Sea