Journal of Paleolimnology

, Volume 58, Issue 4, pp 497–510 | Cite as

Glacial and interglacials in the Neotropics: a 130,000-year diatom record from central Panama

  • C. R. Shadik
  • G. M. Cárdenes-Sandí
  • A. Correa-Metrio
  • R. L. Edwards
  • A. Min
  • M. B. Bush
Original paper


The last interglacial was the most recent time when temperatures were 1–2 °C above modern, but little is known of this period in the lowland Neotropics. Equally, data for the full glacial period are very limited. A detailed analysis of the period between ~ 137 and 100 ka was completed to provide a paleoecological history of the last interglacial in central Panama. Two additional fossil diatom records from the same depositional basin provided records of the glacial period. Diatom assemblages were compared across all cores and the dominant species of both glacial and interglacial periods was almost always Aulacoseira granulata. Other species, e.g. Aulacoseira agassizii, Achnanthidium minutissimum, Nitzschia amphibia, and Navicula radiosa, had distinctive patterns of abundance within the record, indicating a shallowing of the lake in the last millennia of MIS5e. The period between 119 and 108 ka witnessed the most change within the high-resolution portion of the record suggesting an increased lake level, with expanding lake margins. Other sediment cores collected within the caldera revealed the continued presence of a lake at El Valle through much of the glacial period, with shallowing evident at the time of the LGM. The changes in diatom assemblages at El Valle provide one of the oldest precipitation records from Central America tracking mean ITCZ position between the last interglacial and glacial periods. Furthermore, the evidence for both a wet interglacial and glacial period support palynological findings that the humid environments of Central Panama were not interrupted by glacial aridity.


Fossil diatoms Glacial Interglacial Lake level Paleoecology Precipitation 



Drilling of the 2008 El Valle core was made possible through a grant from the National Science Foundation (NSF-0902864). We thank all those involved in the drilling process of the EV08 core including Richard Wharry, Diana Ochoa, Andrés Gómez and Javier Luque. We thank Carlos Jaramillo for his help in transporting the core. William Gosling, Louise Thomas, and Peter van Calsteren of the Open University, U.K. are thanked for their assistance in providing the initial U/Th age. We would also like to thank the reviewers for their helpful insights into the composition of this manuscript.

Supplementary material

10933_2017_6_MOESM1_ESM.jpg (900 kb)
ESM1: Most common diatom species in core EV08 from El Valle, Panama. Scale bar is equal to 10 μm a) Ulnaria acus (Kützing) Aboal b)Ulnaria ulna (Nitzsch) Compére c) Aulacoseira agassizii Ostenfeld d) Cyclotella meneghiniana Kützing e) Navicula radiosa Kützing f) Nitzschia amphibia Grunow g) Achnanthidium minutissimum (Kützing) Czarnecki h) Aulacoseira granulata (Ehrenberg) Simonsen (JPEG 899 kb)
10933_2017_6_MOESM2_ESM.pdf (282 kb)
ESM2: 234U/230Th dating information for the EV08 core (PDF 281 kb)
10933_2017_6_MOESM3_ESM.jpg (389 kb)
ESM3: EV08 Quercus record against the EV88 Quercus record. a) EV08 Quercus curve against depth. The 234U/230Th date for this core is indicated by (*). Quercus absence is indicated by the red section with the new chronology date indicated with and arrow. b) EV88 Quercus curve against depth. The 234U/230Th dates for this core is indicated by (*). Quercus absence is indicated by the red section. Quercus presence from extended counts are indicated by (+). (JPEG 388 kb)


  1. ANSP (2012) Algae image database, phycology section. Patrick Center for Environmental Research, The Academy of Natural Sciences.
  2. Baker PA, Fritz SC (2015) Nature and causes of Quaternary climate variation of tropical South America. Quat Sci Rev 124:31–47CrossRefGoogle Scholar
  3. Bar-Matthews M, Ayalon A, Gilmour M, Matthews A, Hawkesworth CJ (2003) Sea–land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta 67:3181–3199CrossRefGoogle Scholar
  4. Battarbee RW (1986) Handbook of holocene palaeoecology and palaeohydrology. Wiley, New YorkGoogle Scholar
  5. Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3):457–474Google Scholar
  6. Bradbury JP, Leyden BW, Salgado-Labouriau ML, Lewis WM Jr, Schubert C, Binford M, Frey DG, Whitehead DR, Weibezahn FH (1981) Late quaternary environmental history of Lake Valencia, Venezuela. Science 214:1299–1305CrossRefGoogle Scholar
  7. Bush MB, Colinvaux PA (1990) A long record of climatic and vegetation change in lowland Panama. J Veg Sci 1:105–119CrossRefGoogle Scholar
  8. Bush MB, Piperno DR, Colinvaux PA, de Oliveira PE, Krissek LA, Miller MC, Rowe WE (1992) A 14 300-yr paleoecological profile of a lowland tropical lake in Panama. Ecol Monogr 62:251–275CrossRefGoogle Scholar
  9. Bush MB, Miller MC, de Oliveira PE, Colinvaux PA (2002) Orbital forcing signal in sediments of two Amazonian lakes. J Paleolimnol 27:341–352CrossRefGoogle Scholar
  10. Bush MB, Hanselman JA, Gosling WD (2010) Non-linear climate change and Andean feedbacks: an imminent turning point? Glob Change Biol 16:3223–3232CrossRefGoogle Scholar
  11. Bush MB, Gosling WD, Colinvaux PA (2011) Climate change in the lowlands of the Amazon Basin. In: Bush MB, Flenley JR, Gosling WD (eds) Tropical rainforest responses to climate change, 2nd edn. Praxis Springer, Chichester, pp 61–84CrossRefGoogle Scholar
  12. CAPE (2006) Last interglacial Arctic warmth confirms polar amplification of climate change. Quat Sci Rev 25:1383–1400CrossRefGoogle Scholar
  13. Cárdenes-Sandí GM (2015) Late quaternary vegetation and climate change in Central America. Florida Institute of Technology, Ann Arbor, p 258Google Scholar
  14. Cheng H, Edwards RL, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X (2016) The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534:640–646CrossRefGoogle Scholar
  15. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  16. Coates AG, Obando JA (1996) The geologic evolution of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. The University of Chicago Press, pp 21–56Google Scholar
  17. Colinvaux PA, De Oliveira PE (2000) Palaeoecology and climate of the Amazon basin during the last glacial cycle. J Quat Sci 15:347–356CrossRefGoogle Scholar
  18. Colinvaux P, Irion G, Räsänen M, Bush M, De Mello JN (2001) A paradigm to be discarded: geological and paleoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana 16:609–646Google Scholar
  19. Correa-Metrio A, Bush MB, Cabrera KR, Sully S, Brenner M, Hodell DA, Escobar J, Guilderson T (2012) Rapid climate change and no-analog vegetation in lowland Central America during the last 86,000 years. Quat Sci Rev 38:63–75CrossRefGoogle Scholar
  20. Cruz FW Jr, Burns SJ, Jercinovic M, Karmann I, Sharp WD, Vuille M (2007) Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim Cosmochim Acta 71:2250–2263Google Scholar
  21. D’Agostino K, Seltzer GO, Baker PA, Fritz SC, Dunbar RB (2002) Late-quaternary lowstands of Lake Titicaca: evidence from high-resolution seismic data. Palaeogeogr Palaeocl 179:97–111CrossRefGoogle Scholar
  22. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjornsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364:218–220CrossRefGoogle Scholar
  23. ETESA (2009) Mapas Hidrometeorologicos. Datos Climáticos Históricos. Pixel Media Publicidad.
  24. Fritz SC, Cumming BF, Gasse F, Laird KR (1999) Diatoms as indicators of hydrologic and climatic change in saline lakes. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, pp 41–72Google Scholar
  25. Fritz SC, Baker PA, Seltzer GO, Ballantyne A, Tapia PM, Cheng H, Edwards RL (2007) Quaternary glaciation and hydrologic variation in the South American tropics as reconstructed from the Lake Titicaca drilling project. Quat Res 68:410–420CrossRefGoogle Scholar
  26. Fritz SC, Baker P, Tapia P, Spanbauer T, Westover K (2012) Evolution of the Lake Titicaca basin and its diatom flora over the last ~ 370,000 years. Palaeogeogr Palaeocl 317:93–103CrossRefGoogle Scholar
  27. Gibson KA, Peterson LC (2014) A 0.6 million year record of millennial-scale climate variability in the tropics. Geophys Res Lett 41:969–975CrossRefGoogle Scholar
  28. Gosling WD, Bush MB, Hanselman JA, Chepstow-Lusty A (2008) Glacial-interglacial changes in moisture balance and the impact on vegetation in the southern hemisphere tropical Andes (Bolivia/Peru). Palaeogeogr Palaeocl 259:35–50CrossRefGoogle Scholar
  29. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  30. Groot MHM, Bogotá RG, Lourens LJ, Hooghiemstra H, Vriend M, Berrio JC, Tuenter E, Van der Plicht J, Van Geel B, Ziegler M et al (2011) Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycle. Clim Past 7:299–316CrossRefGoogle Scholar
  31. Guiry MD, Guiry GM (2015) AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway.
  32. Haberyan KA, Horn SP, Cumming BF (1997) Diatom assemblages from Costa Rican lakes: an initial ecological assessment. J Paleolimnol 17:263–294CrossRefGoogle Scholar
  33. Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137CrossRefGoogle Scholar
  34. Haffer J, Prance GT (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16:579–605Google Scholar
  35. Hanselman JA, Gosling WD, Paduano GM, Bush MB (2005) Contrasting pollen histories of MIS 5e and the Holocene from Lake Titicaca (Bolivia/Peru). J Quat Sci 20:663–670CrossRefGoogle Scholar
  36. Hanselman JA, Bush MB, Gosling WD, Collins A, Knox C, Baker PA, Fritz SC (2011) A 370,000-year record of vegetation and fire history around Lake Titicaca (Bolivia/Peru). Palaeogeogr Palaeocl 305:201–214CrossRefGoogle Scholar
  37. Haug GH, Gunther D, Peterson LC, Sigman DM, Hughen KA, Aeschlimann B (2003) Climate and the collapse of Maya civilization. Science 299:1731–1734CrossRefGoogle Scholar
  38. Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152CrossRefGoogle Scholar
  39. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110CrossRefGoogle Scholar
  40. Hidalgo PJ, Vogel TA, Rooney TO, Currier RM, Layer PW (2011) Origin of silicic volcanism in the Panamanian arc: evidence for a two-stage fractionation process at El Valle volcano. Contrib Mineral Petrol 162:1115–1138CrossRefGoogle Scholar
  41. Hill MO (1979) DECORANA—A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Annu Rev Ecol Ebol Syst. Cornell University, New YorkGoogle Scholar
  42. Hodell DA, Anselmetti FS, Ariztegui D, Brenner M, Curtis JH, Gilli A, Grzesik DA, Guilderson TJ, Muller AD, Bush MB, Correa-Metrio A, Escobar J, Kutterolf S (2008) An 85-ka record of climate change in lowland Central America. Quat Sci Rev 27:1152–1165CrossRefGoogle Scholar
  43. Hooghiemstra H (1984) Vegetational and climatic history of the high plain of Bogota, Colombia. Dissertaciones Botanicae 79, J. Cramer, VaduzGoogle Scholar
  44. Hooghiemstra H (2002) The dynamic rainforest ecosystem on geological, quaternary and human time scales. In: Verweij P (ed) Understanding and capturing the multiple values of tropical forest. Tropenbos International, Wageningen, pp 7–19Google Scholar
  45. Hooghiemstra H, van der Hammen T (1998) Neogene and quaternary development of the neotropical rain forest: the refugia hypothesis, and a literature review. Earth Sci Rev 44:147–183CrossRefGoogle Scholar
  46. Kawamura K, Parrenin F, Lisiecki L, Uemura R, Vimeux F, Severinghaus JP, Hutterli MA, Nakazawa T, Aoki S, Jouzel J (2007) Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448:912–916CrossRefGoogle Scholar
  47. Kilham P, Kilham SS, Hecky RE (1986) Hypothesized resource relationships among African planktonic diatoms. Limnol Oceanogr 31:1169–1181CrossRefGoogle Scholar
  48. Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  49. Ledru M-P, Rousseau DD, Cruz FW Jr., Riccomini C, Karmann I, Martin L (2005) Paleoclimate changes during the last 100,000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison. Quat Res 64:444–450CrossRefGoogle Scholar
  50. Maher BA, Hu M (2006) A high-resolution record of Holocene rainfall variations from the western Chinese Loess Plateau: antiphase behaviour of the African/Indian and East Asian summer monsoons. Holocene 16:309–319CrossRefGoogle Scholar
  51. McIntire CD (1968) Structural characteristics of benthic algal communities in laboratory streams. Ecology 49:520–537CrossRefGoogle Scholar
  52. Nikolova I, Yin Q, Berger A, Singh UK, Karami M (2013) The last interglacial (Eemian) climate simulated by LOVECLIM and CCSM3. Clim Past 9:1789CrossRefGoogle Scholar
  53. Owen RB, Renaut RW, Scott JJ, Potts R, Behrensmeyer AK (2009) Wetland sedimentation and associated diatoms in the Pleistocene Olorgesailie Basin, southern Kenya Rift Valley. Sediment Geol 222:124–137CrossRefGoogle Scholar
  54. Paillard D, Labeyrie L, Yiou P (1996) Macintosh program performs time-series analysis. Eos Trans Am Geophys Union 77:379CrossRefGoogle Scholar
  55. Patrick R, Reimer CW (1966) The diatoms of the United States, vol 1. The Academy of Natural Sciences of Philadelphia, PhiladelphiaGoogle Scholar
  56. Patrick R, Reimer CW (1975) The diatoms of the United States, vol 2. The Academy of Natural Sciences of Philadelphia, PhiladelphiaGoogle Scholar
  57. Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK, Butterworth CA (2004) Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos Trans R Soc B 359:515–538CrossRefGoogle Scholar
  58. Pérez M, Bonilla S, Martínez G (1999) Phytoplankton community of a polymictic reservoir, La Plata River basin, Uruguay. Rev Bras Biol 59:535–541CrossRefGoogle Scholar
  59. Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeogr Palaeocl 234:97–113CrossRefGoogle Scholar
  60. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  61. Riboulleau A, Bout-Roumazeilles V, Tribovillard N (2014) Controls on detrital sedimentation in the Cariaco Basin during the last climatic cycle: insight from clay minerals. Quat Sci Rev 94:62–73CrossRefGoogle Scholar
  62. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  63. Seltzer GO, Cross S, Baker P, Dunbar R, Fritz S (1998) High-resolution seismic reflection profiles from Lake Titicaca, Peru/Bolivia. Evidence for Holocene aridity in the tropical Andes. Geology 26:167–170CrossRefGoogle Scholar
  64. Spaulding SA, Lubinski DJ, Potapova M (2010) Diatoms of the United States.
  65. Stebbins GL (1974) Flowering plants: evolution above the species level. The Belknap Press of Harvard University Press, CambridgeCrossRefGoogle Scholar
  66. Sublette Mosblech NA, Chepstow-Lusty A, Valencia BG, Bush MB (2012) Anthropogenic control of late-Holocene landscapes in the Cuzco region, Peru. Holocene 22:1361–1372CrossRefGoogle Scholar
  67. Tibby J (2001) Diatoms as indicators of sedimentary processes in Burrinjuck reservoir, New South Wales, Australia. Quat Int 83:245–256CrossRefGoogle Scholar
  68. Tremarin PI, Ludwig TAV, Torgan LC (2012) Ultrastructure of Aulacoseira brasiliensis sp. nov. (Coscinodiscophyceae) and comparison with related species. Fottea 12:171–188CrossRefGoogle Scholar
  69. Tzedakis C (2003) Timing and duration of Last Interglacial conditions in Europe: a chronicle of a changing chronology. Quat Sci Rev 22:763–768CrossRefGoogle Scholar
  70. Van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26CrossRefGoogle Scholar
  71. Van der Hammen T, Absy ML (1994) Amazonia during the last glacial. Palaeogeogr Palaeocl 109:247–261CrossRefGoogle Scholar
  72. Van der Hammen T, Hooghiemstra H (2003) Interglacial–glacial Fuquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Glob Planet Change 36:181–199CrossRefGoogle Scholar
  73. Vélez M, Berrio J, Hooghiemstra H, Metcalfe S, Marchant R (2005) Palaeoenvironmental changes during the last ca. 8590 calibrated yr (7800 radiocarbon yr) in the dry forest ecosystem of the Patía Valley, Southern Colombian Andes: a multiproxy approach. Palaeogeogr Palaeocl 216:279–302CrossRefGoogle Scholar
  74. Wang X, Edwards RL, Auler AS, Cheng H, Kong X, Wang Y, Cruz FW, Dorale JA, Chiang H-W (2017) Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541:204–207CrossRefGoogle Scholar
  75. Weldeab S, Lea DW, Schneider RR, Andersen N (2007) 155,000 years of West African monsoon and ocean thermal evolution. Science 316:1303–1307CrossRefGoogle Scholar
  76. Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19:639–644CrossRefGoogle Scholar
  77. Yarincik KM, Murray RW, Lyons TW, Peterson LC, Haug GH (2000) Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578,000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography 15:593–604CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • C. R. Shadik
    • 1
  • G. M. Cárdenes-Sandí
    • 1
    • 2
  • A. Correa-Metrio
    • 1
    • 3
  • R. L. Edwards
    • 4
  • A. Min
    • 4
  • M. B. Bush
    • 1
  1. 1.Department of Biological SciencesFlorida Institute of TechnologyMelbourneUSA
  2. 2.Escuela Centroamericana de GeologíaUniversity of Costa RicaSan JoséCosta Rica
  3. 3.Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoMexico City, DFMexico
  4. 4.Department of Earth SciencesUniversity of MinnesotaMinneapolisUSA

Personalised recommendations