Journal of Paleolimnology

, Volume 57, Issue 1, pp 95–108 | Cite as

Seasonal patterns of pollen sedimentation in Lake Montcortès (Central Pyrenees) and potential applications to high-resolution paleoecology: a 2-year pilot study

  • V. Rull
  • M. C. Trapote
  • E. Safont
  • N. Cañellas-Boltà
  • N. Pérez-Zanón
  • J. Sigró
  • T. Buchaca
  • T. Vegas-Vilarrúbia
Original paper


Lakes with varved sediments are especially well suited for paleoecological study, from annual to even seasonal resolution. The interpretative power of such high-resolution paleoenvironmental reconstructions relies on the availability of modern analogs with the same temporal resolution. We studied seasonal pollen sedimentation in varved Lake Montcortès, Central Pyrenees (Spain), as a modern analog for high-resolution reconstruction of Late Holocene vegetation and landscape dynamics. Seasonal samples were obtained from sediment traps that were submerged near the maximum water depth for a 2-year period (fall 2013 to fall 2015). Seasonal pollen sedimentation was compared with meteorological variables from a nearby weather station. Bulk pollen sedimentation, dominated by Pinus (pine) and Quercus (oak), followed a clear seasonal pattern that peaked during the spring/summer, coinciding with maximum temperature and precipitation, minimum relative humidity and moderate winds from the SSE. Pollen sedimentation lags (PSL) were observed for most pollen types, as substantial amounts of pollen were found in the traps outside of their respective flowering seasons. Two pollen assemblages were clearly differentiated by their taxonomic composition, corresponding to spring/summer and fall/winter. This pattern is consistent with existing interpretation of the sediment varves, specifically, that varves are formed by two-layer couplets that represent the same seasonality as pollen. We concluded that pollen sedimentation in Lake Montcortès exhibits a strong seasonal signal in the quantity of pollen, the taxonomic composition of the pollen assembalges, and relationships between the pollen and meteorological variables. Thus, varved sediments provide a potentially powerful tool for paleoecological reconstruction at seasonal resolution. This method could be used not only to identify paleoenvironmental trends, but also to identify annual layers and therefore date sediments, even in the absence of evident sediment laminations. A satisfactory explanation of PSL will require further studies that examine internal lake dynamics and pollen production/dispersal patterns.


Laminated sediments Varves Palynology Pollen influx High-resolution paleoecology Sediment traps Seasonality 



This work was funded by the Ministry of Economy and Competitivity (project MONT-500; reference CGL2012-33665; PI: Teresa Vegas-Vilarrúbia). The authors are very grateful to the Council of Baix Pallars, the Cultural Association Lo Vent de Port and Busseing Pallars for their direct involvement in the project and their continuous support. Pere Anadón and Xavier Figuera shared their knowledge on the different social and natural aspects of the zone. Fieldwork was performed with the collaboration of Joan Gomà, Arantza Lara, Eric Puche, Pilar López and Miquel Sentmartí. Fieldwork permits were provided by the Territorial Service of the department of Agriculture, Livestock, Fishing and Natural Environment of Catalunya. The comments of three anonymous reviewers contributed to improvement of the original manuscript.


  1. Bennett KD, Willis KJ (2002) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, volume 3: terrestrial, algal, and siliceous indicators. Kluwer, Dordrecht, pp 5–30Google Scholar
  2. Bloesch J (1994) A review of methods used to measure sediment resuspension. Hydrobiologia 284:13–18CrossRefGoogle Scholar
  3. Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydrol 42:15–55Google Scholar
  4. Bolòs O, Vigo J, Masalles RM, Ninot JM (2000) Flora manual dels Països Catalans. Pòrtic Natura, BarcelonaGoogle Scholar
  5. Bolòs O, Vigo J, Carreras J (2004) Mapa de la vegetació vegetació potencial de Catalunya 1:250.000. Institut d’Estudis Catalans, BarcelonaGoogle Scholar
  6. Cañellas-Boltà N, Rull V, Vigo J, Mercadé A (2009) Modern pollen–vegetation relationships along an altitudinal transect in the Central Pyrenees (southwestern Europe). Holocene 19:1185–1200CrossRefGoogle Scholar
  7. Carreras J, Vigo J, Ferré A (2005–2006) Manual dels hàbitats de Catalunya, vol I–VIII. Departament de Medi Ambient i Habitatge, Generalitat de Catalunya, BarcelonaGoogle Scholar
  8. CEC (Commission of the European Communities) (1991) CORINE biotopes manual. Habitats of the European Community, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  9. Corella JP, Moreno A, Morellón M, Rull V, Giralt S, Rico MT, Pérez-Sanz A, Valero-Garcés BL (2011) Climate and human impact on a meromictic lake during the last 6000 years (Montcortés Lake, Central Pyrenees, Spain). J Paleolimnol 46:351–367CrossRefGoogle Scholar
  10. Corella JP, Brauer A, Mangili C, Rull V, Vegas-Vilarrúbia T, Morellón M, Valero-Garcés B (2012) The 1.5 ka varved record of Lake Montcortès (southern Pyrenees, NE Spain). Quat Res 78:323–332CrossRefGoogle Scholar
  11. Corella JP, Benito G, Rodriguez-Lloveras X, Brauer A, Valero-Garcés B (2014) Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quat Sci Rev 98:77–90CrossRefGoogle Scholar
  12. Erdtman G (1952) Pollen morphology and plant taxonomy. Angiosperms. Almqvist & Wiksell, StockholmGoogle Scholar
  13. Ferré A, Carrillo E (2007) Mapa d’hàbitats a Catalunya 1:50.000: Areny 251; Tremp 252. Institut Cartogràfic de Catalunya, BarcelonaGoogle Scholar
  14. Giesecke T, Fontana SL (2008) Revisiting pollen accumulation rates from Swedish lake sediments. Holocene 18:293–305CrossRefGoogle Scholar
  15. Giesecke T, Fontana SL, van der Knaap WO, Pardoe HS, Pidek IA (2010) From early pollen trapping experiments to the Pollen Monitoring Programme. Veg Hist Archaeobot 19:247–258CrossRefGoogle Scholar
  16. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871CrossRefGoogle Scholar
  17. Helbig N, Vogel B, Vogel H, Fiedler F (2004) Numerical modelling of pollen dispersion on the regional scale. Aerobiologia 20:3–19CrossRefGoogle Scholar
  18. Hughuet C, Fietz S, Moraleda N, Litt T, Heumann G, Stockhecke M, Anselmetti FS, Sturm M (2012) A seasonal cycle of terrestrial inputs in Lake Van, Turkey. Environ Sci Pollut Res 19:3628–3635CrossRefGoogle Scholar
  19. Jongman RHG, Ter Braak CJF, Van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Lotter AF (1986) Evidence of annual layering in Holocene sediments of Soppensee, Switzerland. Aquat Sci 51:19–30CrossRefGoogle Scholar
  21. Mann ME, Bradley RS, Hughes MK (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  22. Martín-Puertas C, Valero-Garcés BL, Brauer A, Mata MP, Delgado-Huertas A, Dulski P (2009) The Iberian-Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain). Quat Res 71:108–120CrossRefGoogle Scholar
  23. Mercadé A, Vigo J, Rull V, Vegas-Vilarrúbia T, Garcés S, Lara A, Cañellas-Boltà N (2013) Vegetation and landscape around Lake Montcortès (Catalan pre-Pyrenees) as a tool for palaeoecological study of lake sediments. Coll Bot 32:87–101CrossRefGoogle Scholar
  24. Mieszczankin T (1997) A spacio-temporal pattern of pollen sedimentation in a dimictic lake with laminated sediments. Water Air Soil Pollut 99:587–592Google Scholar
  25. Mieszczankin T, Noryskiewicz B (2000) Processes that can disturb the chronostratigraphy of laminated sediments and pollen deposition. J Paleolimnol 23:129–140CrossRefGoogle Scholar
  26. Muñoz A, Ojeda J, Sánchez-Valverde B (2002) Sunspot-like and ENSO/NAO-like periodicities in lacustrine laminated sediments of the Pliocene Villarroya Basin (La Rioja, Spain). J Paleolimnol 27:453–463CrossRefGoogle Scholar
  27. Ninot JM (2006) Mapa d’hàbitats a Catalunya 1:50.000. Pont de Suert 213; Sort 214. Institut Cartogràfic de Catalunya, BarcelonaGoogle Scholar
  28. Ojala AEK, Francus P, Zolitschka B, Besonen M, Lamoureux SF (2012) Characteristics of sedimentary varve chronologies—a review. Quat Sci Rev 43:45–60CrossRefGoogle Scholar
  29. O’Sullivan PE (1983) Annually laminated lake sediments and the study of quaternary environmental changes—a review. Quat Sci Rev 1:245–313CrossRefGoogle Scholar
  30. Pidek IA, Poska A, Kaszewski BM (2015) Taxon-specific pollen deposition dynamics in a temperate forest zone, SE Poland: the impact of physiological rhythmicity and weather controls. Aerobiologia 31:219–238CrossRefGoogle Scholar
  31. Pla-Rabes S, Catalan J (2011) Deciphering chrysophyte responses to climate seasonality. J Paleolimnol 46:139–150CrossRefGoogle Scholar
  32. Punning J-M, Terasmaa J, Koff T, Alliksaar T (2003) Seasonal fluxes of particulate matter in a small closed lake in northern Estonia. Water Air Soil Pollut 149:77–92CrossRefGoogle Scholar
  33. Romero-Viana L, Juliá R, Camacho A, Vicente E, Miracle MR (2008) Climate signal in varve thickness: Lake La Cruz (Spain), a case study. J Paleolimnol 40:703–714CrossRefGoogle Scholar
  34. Romero-Viana L, Juliá R, Schimmel M, Camacho A, Vicente E, Miracle MR (2011) Reconstruction of annual winter rainfall since A.D.1579 in central-eastern Spain based on calcite laminated sediment from Lake La Cruz. Clim Change 107:343–361CrossRefGoogle Scholar
  35. Rull V (1987) A note on pollen counting in paleoecology. Pollen Spores 29:471–480Google Scholar
  36. Rull V (2001) A quantitative palynological record from the early Miocene of western Venezuela, with emphasis on mangroves. Palynology 25:109–126CrossRefGoogle Scholar
  37. Rull V (2003) Contribution of quantitative ecological methods to the interpretation of stratigraphically homogeneous pre-quaternary sequences: an example from the oligocene of Venezuela. Palynology 27:75–98Google Scholar
  38. Rull V (2014) Time continuum and true long-term ecology: from theory to practice. Front Ecol Evol 2:75. doi: 10.3389/fevo.2014.00075 CrossRefGoogle Scholar
  39. Rull V, Vegas-Vilarrúbia T (2014) Preliminary report on a mid-19th century Cannabis pollen peak in NE Spain: historical context and potential chronological significance. Holocene 24:1378–1383CrossRefGoogle Scholar
  40. Rull V, Vegas-Vilarrúbia T (2015) Crops and weeds from the Lake Montcortès region (southern Pyrenees) during the last millennium: a comparison of historical and palynological records. Veg Hist Archaeobot 24:699–710CrossRefGoogle Scholar
  41. Rull V, González-Sampériz P, Corella JP, Morellón M, Giralt S (2011) Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: the Montcortès lacustrine record. J Paleolimnol 46:387–404CrossRefGoogle Scholar
  42. Scussolini P, Vegas-Vilarrúbia T, Rull V, Corella P, Valero B, Gomà J (2011) Mid-late Holocene climate change and human impact based on diatoms, algae and aquatic vegetation pollen from Lake Montcortès (NE Iberian Peninsula). J Paleolimnol 46:369–385CrossRefGoogle Scholar
  43. Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New YorkGoogle Scholar
  44. St. Jacques J-M, Cumming BF, Smol JF (2008) A statistical method for varve verification using seasonal pollen deposition. J Paleolimnol 40:733–744CrossRefGoogle Scholar
  45. Tippett R (1964) An investigation into the nature of the layering of deep-water sediments in two eastern Ontario lakes. Can J Bot 42:1693–1709CrossRefGoogle Scholar
  46. van der Knaap WO, van Leeuven JFN, Svitavská-Svobodová H, Pidek IA, Kvavadze E, Chichinadze M et al (2010) Annual pollen traps reveal the complexity of climatic control on pollen productivity in Europe and the Caucasus. Veg Hist Archaeobot 19:285–307CrossRefGoogle Scholar
  47. Vigo J, Ninot J (1987) Los Pirineos. In: Peinado M, Rivas-Martínez F (eds) La vegetación de España. Universidad de Alcalá de Henares, Madrid, pp 349–384Google Scholar
  48. Vigo J, Carreras J, Ferré A (2005–2008) Manual dels hàbitats de Catalunya 1–8. Departament de Medi Ambient i Habitatge (Generalitat de Catalunya), BarcelonaGoogle Scholar
  49. Zolitschka B, Francus P, Ojala AEK, Schimmelmann A (2015) Varves in lake sediments—a review. Quat Sci Rev 117:1–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratory of PaleoecologyInstitute of Earth Sciences Jaume Almera (ICTJA-CSIC)BarcelonaSpain
  2. 2.Department of Evolutionary Biology, Ecology and Environmental SciencesUniversitat de BarcelonaBarcelonaSpain
  3. 3.Center for Climate Change (C3)Universitat Rovira i VirgiliTarragonaSpain
  4. 4.Centre for Advanced Studies of Blanes (CEAB-CSIC)BlanesSpain

Personalised recommendations